Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Acoust Soc Am ; 155(4): 2492-2502, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38587431

ABSTRACT

The swim bladder in some teleost fish functions to transfer the sound energy of acoustic stimuli to the inner ears. This study uses the auditory evoked potential tests, micro-computed tomography scanning, reconstruction, and numerical modeling to assess the contribution of the swim bladder to hearing in crucian carp (Carassius carassius). The auditory evoked potential results show that, at the tested frequency range, the audiogram of fish with an intact swim bladder linearly increases, ranging from 100 to 600 Hz. Over this frequency, the sound pressure thresholds have a local lowest value at 800 Hz. The mean auditory threshold of fish with an intact swim bladder is lower than that of fish with a deflated swim bladder by 0.8-20.7 dB. Furthermore, numerical simulations show that the received pressure of the intact swim bladders occurs at a mean peak frequency of 826 ± 13.6 Hz, and no peak response is found in the deflated swim bladders. The increased sensitivity of reception in sound pressure and acceleration are 34.4 dB re 1 µPa and 40.3 dB re 1 m·s-2 at the natural frequency of swim bladder, respectively. Both electrophysiological measurement and numerical simulation results show that the swim bladder can potentially extend hearing bandwidth and further enhance auditory sensitivity in C. carassius.


Subject(s)
Carps , Animals , Urinary Bladder , X-Ray Microtomography , Hearing , Hearing Tests
2.
Plants (Basel) ; 12(24)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38140475

ABSTRACT

Based on the established efficient regeneration system for watercress in our laboratory, we optimized the processes of pretreatment, co-culture, and differentiation culture. Through GFP fluorescence and PCR identification, we successfully obtained transgenic watercress with the DR5 gene, which allowed us to investigate the distribution details of auxin in the growth process of watercress. Our findings provide an effective method for gene function research and lay the foundation for innovative utilization of germplasm resources of watercress.

3.
Plants (Basel) ; 12(20)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37895987

ABSTRACT

A well-developed root system is crucial for the rapid growth, asexual reproduction, and adaptation to the drought environments of the watercress. After analyzing the transcriptome of the watercress root system, we found that a high concentration of auxin is key to its adaptation to dry conditions. For the first time, we obtained DR5::EGFP watercress, which revealed the dynamic distribution of auxin in watercress root development under drought conditions. Via the application of naphthylphthalamic acid (NPA), 4-biphenylboronic acid (BBO), ethylene (ETH), abscisic acid (ABA), and other factors, we confirmed that auxin has a significant impact on the root development of watercress. Finally, we verified the role of auxin in root development using 35S::NoYUC8 watercress and showed that the synthesis of auxin in the root system mainly depends on the tryptophan, phenylalanine, and tyrosine amino acids (TAA) synthesis pathway. After the level of auxin increases, the root system of the watercress develops toward adaptation to dry environments. The formation of root aerenchyma disrupts the concentration gradient of auxin and is a key factor in the differentiation of lateral root primordia and H cells in watercress.

4.
Antioxidants (Basel) ; 12(9)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37760013

ABSTRACT

WRKY transcription factors (TFs) participate in plant defense mechanisms against biological and abiotic stresses. However, their regulatory role in heat resistance is still unclear in non-heading Chinese cabbage. Here, we identified the WRKY-IIe gene BcWRKY22(BraC09g001080.1), which is activated under high temperatures and plays an active role in regulating thermal stability, through transcriptome analysis. We further discovered that the BcWRKY22 protein is located in the nucleus and demonstrates transactivation activity in both the yeast and plant. Additionally, our studies showed that the transient overexpression of BcWRKY22 in non-heading Chinese cabbage activates the expression of catalase 2 (BcCAT2), enhances CAT enzyme activity, and reduces Hydrogen Peroxide (H2O2) accumulation under heat stress conditions. In addition, compared to its wild-type (WT) counterparts, Arabidopsis thaliana heterologously overexpresses BcWRKY22, improving thermotolerance. When the BcWRKY22 transgenic root was obtained, under heat stress, the accumulation of H2O2 was reduced, while the expression of catalase 2 (BcCAT2) was upregulated, thereby enhancing CAT enzyme activity. Further analysis revealed that BcWRKY22 directly activates the expression of BcCAT2 (BraC08g016240.1) by binding to the W-box element distributed within the promoter region of BcCAT2. Collectively, our findings suggest that BcWRKY22 may serve as a novel regulator of the heat stress response in non-heading Chinese cabbage, actively contributing to the establishment of thermal tolerance by upregulating catalase (CAT) activity and downregulating H2O2 accumulation via BcCAT2 expression.

5.
Int J Mol Sci ; 24(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37240015

ABSTRACT

Flavonols have been shown to respond to a variety of abiotic stresses in plants, including cold stress. Higher total flavonoid content was found in non-heading Chinese cabbage (NHCC, Brassica campestris (syn. Brassica rapa) ssp. chinensis) after cold stress. A non-targeted metabolome analysis showed a significant increase in flavonol content, including that of quercetin and kaempferol. Here, we found that an R2R3-MYB transcription factor, BcMYB111, may play a role in this process. BcMYB111 was up-regulated in response to cold treatment, with an accompanying accumulation of flavonols. Then, it was found that BcMYB111 could regulate the synthesis of flavonols by directly binding to the promoters of BcF3H and BcFLS1. In the transgenic hairy roots of NHCC or stable transgenic Arabidopsis, overexpression of BcMYB111 increased flavonol synthesis and accumulation, while these were reduced in virus-induced gene silencing lines in NHCC. After cold stress, the higher proline content and lower malondialdehyde (MDA) content showed that there was less damage in transgenic Arabidopsis than in the wild-type (WT). The BcMYB111 transgenic lines performed better in terms of antioxidant capacity because of their lower H2O2 content and higher superoxide dismutase (SOD) and peroxidase (POD) enzyme activities. In addition, a key cold signaling gene, BcCBF2, could specifically bind to the DRE element and activate the expression of BcMYB111 in vitro and in vivo. The results suggested that BcMYB111 played a positive role in enhancing the flavonol synthesis and cold tolerance of NHCC. Taken together, these findings reveal that cold stress induces the accumulation of flavonols to increase tolerance via the pathway of BcCBF2-BcMYB111-BcF3H/BcFLS1 in NHCC.


Subject(s)
Arabidopsis , Brassica , Cold-Shock Response , Arabidopsis/genetics , Hydrogen Peroxide/metabolism , Stress, Physiological/genetics , Brassica/genetics , Brassica/metabolism , Flavonols/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics
6.
Front Cell Infect Microbiol ; 12: 911259, 2022.
Article in English | MEDLINE | ID: mdl-35811667

ABSTRACT

Autism spectrum disorder (ASD) is considered a heterogeneous neurodevelopmental disorder characterized by significant social, communication, and behavioral impairments. The gut microbiota is increasingly considered a promising therapeutic target in ASD. Farnesoid X receptor (FXR) has recently been shown to modulate the gut microbiota. We hypothesized that FXR agonist GW4064 could ameliorate behavioral deficits in an animal model for autism: BTBR T+Itpr3tf/J (BTBR) mouse. As expected, administration of GW4064 rescued the sociability of BTBR mice in the three-chamber sociability test and male-female social reciprocal interaction test, while no effects were observed in C57BL/6J mice. We also found that GW4064 administration increased fecal microbial abundance and counteracted the common ASD phenotype of a high Firmicutes to Bacteroidetes ratio in BTBR mice. In addition, GW4064 administration reversed elevated Lactobacillus and decreased Allobaculum content in the fecal matter of BTBR animals. Our findings show that GW4064 administration alleviates social deficits in BTBR mice and modulates selective aspects of the composition of the gut microbiota, suggesting that GW4064 supplementation might prove a potential strategy for improving ASD symptoms.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Gastrointestinal Microbiome , Animals , Autistic Disorder/genetics , Disease Models, Animal , Female , Isoxazoles , Male , Mice , Mice, Inbred C57BL , Mice, Inbred Strains
7.
J Acoust Soc Am ; 151(6): 3573, 2022 06.
Article in English | MEDLINE | ID: mdl-35778211

ABSTRACT

Odontocetes have evolved special acoustic structures in the forehead to modulate echolocation and communication signals into directional beams to facilitate feeding and social behaviors. Whistle directivity was addressed for the Indo-Pacific humpback dolphin (Sousa chinensis) by developing numerical models in the current paper. Directivity was first examined at the fundamental frequency 5 kHz, and simulations were then extended to the harmonics of 10, 15, 20, 25, and 30 kHz. At 5 kHz, the -3 dB beam widths in the vertical and horizontal planes were 149.3° and 119.4°, corresponding to the directivity indexes (DIs) of 4.4 and 5.4 dB, respectively. More importantly, we incorporated directivity of the fundamental frequency and harmonics to produce an overall beam, resulting in -3 dB beam widths of 77.2° and 62.9° and DIs of 8.2 and 9.7 dB in the vertical and horizontal planes, respectively. Harmonics can enhance the directivity of fundamental frequency by 3.8 and 4.3 dB, respectively. These results suggested the transmission system can modulate whistles into directional projection, and harmonics can improve DI.


Subject(s)
Dolphins , Echolocation , Acoustics , Animals , Sound Spectrography , Vocalization, Animal
8.
Plant Sci ; 321: 111291, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35696933

ABSTRACT

Cold stress is a key factor limiting the yield and quality of non-heading Chinese cabbage. The hydrophilic protective protein LEA plays an important role in plant abiotic stress. In this study, 72 BcLEAs were identified from non-heading Chinese cabbage and divided into 9 subfamilies by phylogenetic analysis. Gene structure analysis showed that BcLEAs were unevenly distributed on 10 chromosomes, with few introns. Through analyzing the expression of these genes under cold stress by RNA-seq and qRT-PCR, two genes (BcLEA4-7 and BcLEA4-18) highly sensitive to cold stress were identified, whose roles in cold tolerance of non-heading Chinese cabbage were demonstrated by virus-induced gene silencing. The BcLEA promoters were analyzed to study the cold response mechanism of BcLEA4-7 and BcLEA4-18, revealing that both BcLEA4-7 and BcLEA4-18 promoters contained two CRT/DRE elements. Subsequently, it was found that the promoters isolated from non-heading Chinese cabbage could be activated at low temperatures. Further analysis showed BcCBF2 in non-heading Chinese cabbage interacted with two CRT/DRE elements in BcLEA4-7 and BcLEA4-18 promoters to stimulate their activity, indicating that BcCBF2 is an upstream regulator. Meanwhile, the CRT/DRE element located in BcLEA4-7 promoter (-219 bp to -171 bp) and BcLEA4-18 promoter (-234 bp to -186 bp) was more likely to be activated by BcCBF2, which may be attributed to its flanking sequence. These data laid a foundation for further understanding the functional role and regulatory mechanism of BcLEAs in cold stress tolerance.


Subject(s)
Brassica rapa , Brassica , Brassica/genetics , Brassica/metabolism , Brassica rapa/genetics , Brassica rapa/metabolism , China , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/metabolism
9.
Front Cell Dev Biol ; 10: 792490, 2022.
Article in English | MEDLINE | ID: mdl-35309933

ABSTRACT

Autism spectrum disorder (ASD) is defined as a complex heterogeneous disorder and characterized by stereotyped behavior and deficits in communication and social interactions. The emerging microbial knowledge has pointed to a potential link between gut microbiota dysbiosis and ASD. Evidence from animal and human studies showed that shifts in composition and activity of the gut microbiota may causally contribute to the etiopathogenesis of core symptoms in the ASD individuals with gastrointestinal tract disturbances and act on microbiota-gut-brain. In this review, we summarized the characterized gut bacterial composition of ASD and the involvement of gut microbiota and their metabolites in the onset and progression of ASD; the possible underlying mechanisms are also highlighted. Given this correlation, we also provide an overview of the microbial-based therapeutic interventions such as probiotics, antibiotics, fecal microbiota transplantation therapy, and dietary interventions and address their potential benefits on behavioral symptoms of ASD. The precise contribution of altering gut microbiome to treating core symptoms in the ASD needs to be further clarified. It seemed to open up promising avenues to develop microbial-based therapies in ASD.

10.
Toxics ; 11(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36668757

ABSTRACT

The microbial treatment of soil has great potential to reduce chromium pollution. Here, an indigenous chromium-resistant Aspergillus niger strain (A1) was isolated and screened from heavily chromium-contaminated red soil in Yunnan Province, China using a traditional isolation method and a selective culture experiment. The molecular identification of A1 was achieved using 18S rRNA sequencing. The tolerance of the strain to toxic chromium was evaluated through pure laboratory culture. The adsorption effect and mechanism of A1 on chromium in red soil were further studied. The study concluded that A1 exhibited strong activity with exposure to 500 mg·L-1 Cr6+. Chromium adsorption by A. niger occurred mainly through intracellular metabolism, surface complexations with EPS, and chemical reduction with -C=C-, -OXuH, NH2, and -C=0. The optimized results showed that A1 had the best Cr6+ removal effect at pH 4, 40 °C, and a 60 h culture time. Compared with the inoculating of exogenous microbial agents, after inoculating A1 into the chromium-contaminated red soil, Cr6+ content was significantly reduced, and the high-toxicity chromium state (water-soluble and exchange states) decreased, whereas the low-toxicity chromium state (precipitation and residue states) increased. The results of red soil ITS also showed that the inoculation of indigenous microorganisms can better colonize the red soil. This study proves the feasibility of the application of indigenous A. niger to address red soil chromium pollution and provides a new idea and theoretical support for red soil remediation.

SELECTION OF CITATIONS
SEARCH DETAIL
...