Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 34(35): e2204779, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35816107

ABSTRACT

Monolayer Six Cy constitutes an important family of 2D materials that is predicted to feature a honeycomb structure and appreciable bandgaps. However, due to its binary chemical nature and the lack of bulk polymorphs with a layered structure, the fabrication of such materials has so far been challenging. Here, the synthesis of atomic monolayer Si9 C15 on Ru (0001) and Rh(111) substrates is reported. A combination of scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), and density functional theory (DFT) calculations is used to infer that the 2D lattice of Si9 C15 is a buckled honeycomb structure. Monolayer Si9 C15 shows semiconducting behavior with a bandgap of ≈1.9 eV. Remarkably, the Si9 C15 lattice remains intact after exposure to ambient conditions, indicating good air stability. The present work expands the 2D-materials library and provides a promising platform for future studies in nanoelectronics and nanophotonics.

2.
Rev Sci Instrum ; 89(11): 113705, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30501315

ABSTRACT

A low-temperature ultra-high vacuum scanning probe microscopy (SPM) system with molecular beam epitaxy (MBE) capability and optical access was conceived, built, and tested in our lab. The design of the whole system is discussed here, with special emphasis on some critical parts. The SPM scanner head takes a modified Pan-type design with improved rigidity and compatible configuration to optical access and can accommodate both scanning tunneling microscope (STM) tips and tuning-fork based qPlus sensors. In the system, the scanner head is enclosed by a double-layer cold room under a bath type cryostat. Two piezo-actuated focus-lens stages are mounted on both sides of the cold room to couple light in and out. The optical design ensures the system's forward compatibility to the development of photo-assisted STM techniques. To test the system's performance, we conducted STM and spectroscopy studies. The herringbone reconstruction and atomic structure of an Au(111) surface were clearly resolved. The dI/dV spectra of an Au(111) surface were obtained at 5 K. In addition, a periodic 2D tellurium (Te) structure was grown on the Au(111) surface using MBE and the atomic structure is clearly resolved by using STM.

SELECTION OF CITATIONS
SEARCH DETAIL
...