Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 92(7)2018 04 01.
Article in English | MEDLINE | ID: mdl-29343573

ABSTRACT

Mx proteins are interferon (IFN)-induced GTPases that have broad antiviral activity against a wide range of RNA and DNA viruses; they belong to the dynamin superfamily of large GTPases. In this study, we confirmed the anti-classical swine fever virus (CSFV) activity of porcine Mx1 in vitro and showed that porcine Mx2 (poMx2), human MxA (huMxA), and mouse Mx1 (mmMx1) also have anti-CSFV activity in vitro Small interfering RNA (siRNA) experiments revealed that depletion of endogenous poMx1 or poMx2 enhanced CSFV replication, suggesting that porcine Mx proteins are responsible for the antiviral activity of interferon alpha (IFN-α) against CSFV infection. Confocal microscopy, immunoprecipitation, glutathione S-transferase (GST) pulldown, and bimolecular fluorescence complementation (BiFC) demonstrated that poMx1 associated with NS5B, the RNA-dependent RNA polymerase (RdRp) of CSFV. We used mutations in the poMx1 protein to elucidate the mechanism of their anti-CSFV activity and found that mutants that disrupted the association with NS5B lost all anti-CSV activity. Moreover, an RdRp activity assay further revealed that poMx1 undermined the RdRp activities of NS5B. Together, these results indicate that porcine Mx proteins exert their antiviral activity against CSFV by interacting with NS5B.IMPORTANCE Our previous studies have shown that porcine Mx1 (poMx1) inhibits classical swine fever virus (CSFV) replication in vitro and in vivo, but the molecular mechanism of action remains largely unknown. In this study, we dissect the molecular mechanism of porcine Mx1 and Mx2 against CSFV in vitro Our results show that poMx1 associates with NS5B, the RNA-dependent RNA polymerase of CSFV, resulting in the reduction of CSFV replication. Moreover, the mutants of poMx1 further elucidate the mechanism of their anti-CSFV activities.


Subject(s)
Classical Swine Fever Virus/physiology , Myxovirus Resistance Proteins/metabolism , Viral Nonstructural Proteins/metabolism , Virus Replication/physiology , Amino Acid Substitution , Animals , HEK293 Cells , Humans , Mutation, Missense , Myxovirus Resistance Proteins/genetics , Swine , Viral Nonstructural Proteins/genetics
2.
Viruses ; 9(1)2017 01 10.
Article in English | MEDLINE | ID: mdl-28075421

ABSTRACT

Mx proteins are interferon (IFN)-induced dynamin-like GTPases that are present in all vertebrates and inhibit the replication of myriad viruses. However, the role Mx proteins play in IFN-mediated suppression of Japanese encephalitis virus (JEV) infection is unknown. In this study, we set out to investigate the effects of Mx1 and Mx2 expression on the interferon-α (IFNα) restriction of JEV replication. To evaluate whether the inhibitory activity of IFNα on JEV is dependent on Mx1 or Mx2, we knocked down Mx1 or Mx2 with siRNA in IFNα-treated PK-15 cells and BHK-21 cells, then challenged them with JEV; the production of progeny virus was assessed by plaque assay, RT-qPCR, and Western blotting. Our results demonstrated that depletion of Mx1 or Mx2 did not affect JEV restriction imposed by IFNα, although these two proteins were knocked down 66% and 79%, respectively. Accordingly, expression of exogenous Mx1 or Mx2 did not change the inhibitory activity of IFNα to JEV. In addition, even though virus-induced membranes were damaged by Brefeldin A (BFA), overexpressing porcine Mx1 or Mx2 did not inhibit JEV proliferation. We found that BFA inhibited JEV replication, not maturation, suggesting that BFA could be developed into a novel antiviral reagent. Collectively, our findings demonstrate that IFNα inhibits JEV infection by Mx-independent pathways.


Subject(s)
Antiviral Agents/pharmacology , Encephalitis Virus, Japanese/immunology , Immunologic Factors/pharmacology , Interferon-alpha/pharmacology , Myxovirus Resistance Proteins/pharmacology , Animals , Blotting, Western , Cell Line , Cricetinae , Encephalitis Virus, Japanese/physiology , Swine , Viral Load , Viral Plaque Assay , Virus Replication
3.
J Virol ; 90(20): 9194-208, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27489278

ABSTRACT

UNLABELLED: Classical swine fever virus (CSFV), a member of the genus Pestivirus within the family Flaviviridae, is a small, enveloped, positive-strand RNA virus. Due to its economic importance to the pig industry, the biology and pathogenesis of CSFV have been investigated extensively. However, the mechanisms of CSFV entry into cells are not well characterized. In this study, we used systematic approaches to dissect CSFV cell entry. We first observed that CSFV infection was inhibited by chloroquine and NH4Cl, suggesting that viral entry required a low-pH environment. By using the specific inhibitor dynasore, or by expressing the dominant negative (DN) K44A mutant, we verified that dynamin is required for CSFV entry. CSFV particles were observed to colocalize with clathrin at 5 min postinternalization, and CSFV infection was significantly reduced by chlorpromazine treatment, overexpression of a dominant negative form of the EPS15 protein, or knockdown of the clathrin heavy chain by RNA interference. These results suggested that CSFV entry depends on clathrin. Additionally, we found that endocytosis of CSFV was dependent on membrane cholesterol, while neither the overexpression of a dominant negative caveolin mutant nor the knockdown of caveolin had an effect. These results further suggested that CSFV entry required cholesterol and not caveolae. Importantly, the effect of DN mutants of three Rab proteins that regulate endosomal traffic on CSFV infection was examined. Expression of DN Rab5 and Rab7 mutants, but not the DN Rab11 mutant, significantly inhibited CSFV replication. These results were confirmed by silencing of Rab5 and Rab7. Confocal microscopy showed that virus particles colocalized with Rab5 or Rab7 during the early phase of infection within 45 min after virus entry. These results indicated that after internalization, CSFV moved to early and late endosomes before releasing its RNA. Taken together, our findings demonstrate for the first time that CSFV enters cells through the endocytic pathway, providing new insights into the life cycle of pestiviruses. IMPORTANCE: Bovine viral diarrhea virus (BVDV), a single-stranded, positive-sense pestivirus within the family Flaviviridae, is internalized by clathrin-dependent receptor-mediated endocytosis. However, the detailed mechanism of cell entry is unknown for other pestiviruses, such as classical swine fever (CSF) virus (CSFV). CSFV is the etiological agent of CSF, a highly contagious disease of swine that causes numerous deaths in pigs and enormous economic losses in China. Understanding the entry pathway of CSFV will not only advance our knowledge of CSFV infection and pathogenesis but also provide novel drug targets for antiviral intervention. Based on this objective, we used systematic approaches to dissect the pathway of entry of CSFV into PK-15 cells. This is the first report to show that the entry of CSFV into PK-15 cells requires a low-pH environment and involves dynamin- and cholesterol-dependent, clathrin-mediated endocytosis that requires Rab5 and Rab7.


Subject(s)
Cholesterol/metabolism , Classical Swine Fever Virus/physiology , Clathrin/metabolism , Dynamins/metabolism , Virus Internalization , rab GTP-Binding Proteins/metabolism , rab5 GTP-Binding Proteins/metabolism , Animals , Cell Line , Endocytosis , Epithelial Cells/virology , Hydrogen-Ion Concentration , Swine , rab7 GTP-Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...