Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Sci ; 19(13): 4004-4019, 2023.
Article in English | MEDLINE | ID: mdl-37705751

ABSTRACT

Silicosis is a common and ultimately fatal occupational disease, yet the limited therapeutic option remains the major clinical challenge. Apelin, an endogenous ligand of the G-protein-coupled receptor (APJ), is abundantly expressed in diverse organs. The apelin-APJ axis helps to control pathological and physiological processes in lung. The role of apelin in the pathological process and its possible therapeutic effects on silicosis have not been elucidated. In this study, we found that lung expression and circulating levels of apelin were markedly decreased in silicosis patients and silica-induced fibrotic mice and associated with the severity. Furthermore, in vivo data demonstrated that pre-treatment from day 3 and post-treatment from day 15 with apelin could both alleviate silica-induced pulmonary fibrosis in mice. Besides, apelin inhibited pulmonary fibroblast activation via transforming growth factor beta 1 (TGF-ß1) signaling. Our study suggested that apelin could prevent and reverse silica-induced pulmonary fibrosis by inhibiting the fibroblast activation through TGF-ß1 signaling pathway, thus providing a new potential therapeutic strategy for silicosis and other pulmonary fibrosis.


Subject(s)
Pulmonary Fibrosis , Silicosis , Animals , Mice , Apelin , Fibroblasts , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Silicon Dioxide/toxicity , Silicosis/drug therapy , Transforming Growth Factor beta1
2.
Int J Biol Macromol ; 253(Pt 3): 126651, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37709227

ABSTRACT

Silicosis is a severe occupational lung disease caused by inhalation of silica particles. Unfortunately, there are currently limited treatment options available for silicosis. Recent advances have indicated that bone marrow mesenchymal stem cells (BMSCs) have a therapeutic effect on silicosis, but their efficacy and underlying mechanisms remain largely unknown. In this study, we focused on the early phase of silica-induced lung injury to investigate the therapeutic effect of BMSCs. Our findings demonstrated that BMSCs attenuated silica-induced acute pulmonary inflammation by inhibiting NLRP3 inflammasome pathways in lung macrophages. To further understand the mechanisms involved, we utilized RNA sequencing to analyze the transcriptomes of BMSCs co-cultured with silica-stimulated bone marrow-derived macrophages (BMDMs). The results clued tumor necrosis factor-stimulated gene 6 (TSG-6) might be a potentially key paracrine secretion factor released from BMSCs, which exerts a protective effect. Furthermore, the anti-inflammatory and inflammasome pathway inhibition effects of BMSCs were attenuated when TSG-6 expression was silenced, both in vivo and in vitro. Additionally, treatment with exogenous recombinant mouse TSG-6 (rmTSG-6) demonstrated similar effects to BMSCs in attenuating silica-induced inflammation. Overall, our findings suggested that BMSCs can regulate the activation of inflammasome in macrophages by secreting TSG-6, thereby protecting against silica-induced acute pulmonary inflammation both in vivo and in vitro.


Subject(s)
Mesenchymal Stem Cells , Pneumonia , Silicosis , Mice , Animals , Lung , Silicon Dioxide/toxicity , Silicon Dioxide/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Silicosis/therapy , Silicosis/metabolism , Silicosis/pathology , Pneumonia/metabolism , Pneumonia/pathology , Macrophages , Inflammation/pathology , Anti-Inflammatory Agents/pharmacology
3.
Article in English | MEDLINE | ID: mdl-27069492

ABSTRACT

Inflammation is an important etiological factor of hypertensive renal damage. The effects of Yishen Pinggan Recipe (YPR) on urine microalbumin, histology, and NF-κB/P65, IκB-α, IL-1ß, IL-6, and TNF-α in renal tissues were evaluated in SHR to explore the mechanism of its renal protection in hypertensive renal damage. The SBP of 12-week-old SHR was 192.41 ± 3.93 mmHg and DBP was 142.38 ± 5.79 mmHg. Without treatment, the 24-week-old SHRs' SBP was 196.96 ± 3.77 mmHg and DBP was 146.08 ± 4.82 mmHg. After the 12-week-old SHR were administered YPR for 12 weeks, the rats' SBP was 161.45 ± 7.57 mmHg and DBP was 117.21 ± 5.17 mmHg; YPR could lower blood pressure in SHR. And renal function damage was observed in 24-week-old SHR without treatment, manifested as urine protein and morphological changes which could be inhibited by YPR. In addition, YPR could reduce the expression of inflammatory cytokines (IL-1ß, IL-6, and TNF-α) in kidneys. It could also inhibit the nuclear translocation of NF-κB p65 and degradation of IκB-α in renal cells, indicating that the NF-κB signaling pathway was inhibited by YPR. Finally, the study suggests that YPR could significantly improve the renal function in SHR. The mechanism could be attributed to its inhibition of renal NF-κB signaling pathway and inflammation.

4.
Gastroenterol Res Pract ; 2015: 457193, 2015.
Article in English | MEDLINE | ID: mdl-26770191

ABSTRACT

Aims. To investigate the anticolorectal cancer (CRC) effects of Bufalin, a bioactive polyhydroxysteroid from Venenum Bufonis, using HCT116 human CRC cell and an established orthotopic xenograft model in mice, and to explore the mechanisms of action. Material and Methods. Cultured HCT116 cells or BALB/c mice with orthotopic tumor were treated by Bufalin (positive control: 5-FU). Cell proliferation, apoptosis, and cycling were determined by MTT, Annexin V/PI staining, and flow cytometry, respectively. In mice, tumor inhibition rate and animal survival were calculated. The expressions of PTEN/phosphate-PTEN, AKT/phosphate-AKT, Bad, Bcl-xl, Bax, or Caspase-3 in cells and/or tumors were determined by Western blot or immunohistochemical staining. Results. Bufalin significantly inhibited cell proliferation and induced cell apoptosis and cycle arrest in a dose/time-dependent manner. In the animal model, Bufalin treatment resulted in significant inhibition of tumor growth and prolonged survival. In the Bufalin-treated cultured cells and/or xenograft tumors, the expressions of PTEN, Bad, Bax, and Caspase-3 were significantly increased, while p-AKT and Bcl-xL significantly decreased. Conclusions. Our results indicate that Bufalin inhibit cell proliferation and orthotopic tumor growth by inducing cell apoptosis through the intrinsic apoptotic pathway, which is of pivotal significance in the identification of an anticancer drug that may synergize with Bufalin.

SELECTION OF CITATIONS
SEARCH DETAIL
...