Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 19(2)2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30650595

ABSTRACT

Although wireless fingerprinting has been well researched and widely used for indoor localization, its performance is difficult to quantify. Therefore, when wireless fingerprinting solutions are used as location updates in multi-sensor integration, it is challenging to set their weight accurately. To alleviate this issue, this paper focuses on predicting wireless fingerprinting location uncertainty by given received signal strength (RSS) measurements through the use of machine learning (ML). Two ML methods are used, including an artificial neural network (ANN)-based approach and a Gaussian distribution (GD)-based method. The predicted location uncertainty is evaluated and further used to set the measurement noises in the dead-reckoning/wireless fingerprinting integrated localization extended Kalman filter (EKF). Indoor walking test results indicated the possibility of predicting the wireless fingerprinting uncertainty through ANN the effectiveness of setting measurement noises adaptively in the integrated localization EKF.

2.
Sensors (Basel) ; 19(2)2019 Jan 21.
Article in English | MEDLINE | ID: mdl-30669595

ABSTRACT

Reliable and continuous navigation solutions are essential for high-accuracy location-based services. Currently, the real-time kinematic (RTK) based Global Positioning System (GPS) is widely utilized to satisfy such requirements. However, RTK's accuracy and continuity are limited by the insufficient number of the visible satellites and the increasing length of base-lines between reference-stations and rovers. Recently, benefiting from the development of precise point positioning (PPP) and BeiDou satellite navigation systems (BDS), the issues existing in GPS RTK can be mitigated by using GPS and BDS together. However, the visible satellite number of GPS + BDS may decrease in dynamic environments. Therefore, the inertial navigation system (INS) is adopted to bridge GPS + BDS PPP solutions during signal outage periods. Meanwhile, because the quality of BDS geosynchronous Earth orbit (GEO) satellites is much lower than that of inclined geo-synchronous orbit (IGSO) satellites, the predicted observation residual based robust extended Kalman filter (R-EKF) is adopted to adjust the weight of GEO and IGSO data. In this paper, the mathematical model of the R-EKF aided GEO/IGSO/GPS PPP/INS tight integration, which uses the raw observations of GPS + BDS, is presented. Then, the influences of GEO, IGSO, INS, and R-EKF on PPP are evaluated by processing land-borne vehicle data. Results indicate that (1) both GEO and IGSO can provide accuracy improvement on GPS PPP; however, the contribution of IGSO is much more visible than that of GEO; (2) PPP's accuracy and stability can be further improved by using INS; (3) the R-EKF is helpful to adjust the weight of GEO and IGSO in the GEO/IGSO/GPS PPP/INS tight integration and provide significantly higher positioning accuracy.

3.
Sensors (Basel) ; 17(11)2017 Oct 27.
Article in English | MEDLINE | ID: mdl-29077070

ABSTRACT

Dual-frequency Global Positioning System (GPS) Real-time Kinematics (RTK) has been proven in the past few years to be a reliable and efficient technique to obtain high accuracy positioning. However, there are still challenges for GPS single-frequency RTK, such as low reliability and ambiguity resolution (AR) success rate, especially in kinematic environments. Recently, multi-Global Navigation Satellite System (multi-GNSS) has been applied to enhance the RTK performance in terms of availability and reliability of AR. In order to further enhance the multi-GNSS single-frequency RTK performance in terms of reliability, continuity and accuracy, a low-cost micro-electro-mechanical system (MEMS) inertial measurement unit (IMU) is adopted in this contribution. We tightly integrate the single-frequency GPS/BeiDou/GLONASS and MEMS-IMU through the extended Kalman filter (EKF), which directly fuses the ambiguity-fixed double-differenced (DD) carrier phase observables and IMU data. A field vehicular test was carried out to evaluate the impacts of the multi-GNSS and IMU on the AR and positioning performance in different system configurations. Test results indicate that the empirical success rate of single-epoch AR for the tightly-coupled single-frequency multi-GNSS RTK/INS integration is over 99% even at an elevation cut-off angle of 40°, and the corresponding position time series is much more stable in comparison with the GPS solution. Besides, GNSS outage simulations show that continuous positioning with certain accuracy is possible due to the INS bridging capability when GNSS positioning is not available.

4.
Sci Rep ; 6: 30488, 2016 07 29.
Article in English | MEDLINE | ID: mdl-27470270

ABSTRACT

Real-time Precise Point Positioning (PPP) technique is being widely applied for providing precise positioning services with the significant improvement on satellite precise products accuracy. With the rapid development of the multi-constellation Global Navigation Satellite Systems (multi-GNSS), currently, about 80 navigation satellites are operational in orbit. Obviously, PPP performance is dramatically improved with all satellites compared to that of GPS-only PPP. However, the performance of PPP could be evidently affected by unexpected and unavoidable severe observing environments, especially in the dynamic applications. Consequently, we apply Inertial Navigation System (INS) to the Ionospheric-Constrained (IC) PPP to overcome such drawbacks. The INS tightly aided multi-GNSS IC-PPP model can make full use of GNSS and INS observations to improve the PPP performance in terms of accuracy, availability, continuity, and convergence speed. Then, a set of airborne data is analyzed to evaluate and validate the improvement of multi-GNSS and INS on the performance of IC-PPP.

5.
Sensors (Basel) ; 15(3): 5783-802, 2015 Mar 10.
Article in English | MEDLINE | ID: mdl-25763647

ABSTRACT

The continuity and reliability of precise GNSS positioning can be seriously limited by severe user observation environments. The Inertial Navigation System (INS) can overcome such drawbacks, but its performance is clearly restricted by INS sensor errors over time. Accordingly, the tightly coupled integration of GPS and INS can overcome the disadvantages of each individual system and together form a new navigation system with a higher accuracy, reliability and availability. Recently, ionosphere-constrained (IC) precise point positioning (PPP) utilizing raw GPS observations was proven able to improve both the convergence and positioning accuracy of the conventional PPP using ionosphere-free combined observations (LC-PPP). In this paper, a new mode of tightly coupled integration, in which the IC-PPP instead of LC-PPP is employed, is implemented to further improve the performance of the coupled system. We present the detailed mathematical model and the related algorithm of the new integration of IC-PPP and INS. To evaluate the performance of the new tightly coupled integration, data of both airborne and vehicle experiments with a geodetic GPS receiver and tactical grade inertial measurement unit are processed and the results are analyzed. The statistics show that the new approach can further improve the positioning accuracy compared with both IC-PPP and the tightly coupled integration of the conventional PPP and INS.

6.
Sensors (Basel) ; 13(11): 15708-25, 2013 Nov 18.
Article in English | MEDLINE | ID: mdl-24253190

ABSTRACT

Precise Point Positioning (PPP) has become a very hot topic in GNSS research and applications. However, it usually takes about several tens of minutes in order to obtain positions with better than 10 cm accuracy. This prevents PPP from being widely used in real-time kinematic positioning services, therefore, a large effort has been made to tackle the convergence problem. One of the recent approaches is the ionospheric delay constrained precise point positioning (IC-PPP) that uses the spatial and temporal characteristics of ionospheric delays and also delays from an a priori model. In this paper, the impact of the quality of ionospheric models on the convergence of IC-PPP is evaluated using the IGS global ionospheric map (GIM) updated every two hours and a regional satellite-specific correction model. Furthermore, the effect of the receiver differential code bias (DCB) is investigated by comparing the convergence time for IC-PPP with and without estimation of the DCB parameter. From the result of processing a large amount of data, on the one hand, the quality of the a priori ionosphere delays plays a very important role in IC-PPP convergence. Generally, regional dense GNSS networks can provide more precise ionosphere delays than GIM and can consequently reduce the convergence time. On the other hand, ignoring the receiver DCB may considerably extend its convergence, and the larger the DCB, the longer the convergence time. Estimating receiver DCB in IC-PPP is a proper way to overcome this problem. Therefore, current IC-PPP should be enhanced by estimating receiver DCB and employing regional satellite-specific ionospheric correction models in order to speed up its convergence for more practical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...