Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(5): e0301581, 2024.
Article in English | MEDLINE | ID: mdl-38768168

ABSTRACT

Research is ongoing to find solutions to the problem of Consolidation and seepage in saturated clay in enclosure space. Firstly, the boundary of non-zero-constant values is established, considering the seepage boundary of the clay is affected by pumping water or lowering boundary pressure on the site. Secondly, the differential equation is established to reflect the spatial and temporal variations of excess pore water pressure dissipation in the clay in enclosure space, and the solution is derived using variable separation methods. Finally, based on results of the solution derived, contour maps of the water pressure are drawn corresponding with the different inhomogeneous boundary conditions.


Subject(s)
Clay , Clay/chemistry , Water/chemistry , Pressure , Models, Theoretical , Aluminum Silicates/chemistry , Solutions
2.
Biosci Rep ; 39(1)2019 01 31.
Article in English | MEDLINE | ID: mdl-30446524

ABSTRACT

Non-small cell lung cancer (NSCLC) is one of the most fatal types of cancer with significant mortality and morbidity worldwide. MicroRNAs (miRs) have been confirmed to have positive functions in NSCLC. In the present study, we try to explore the role of miR-758 in proliferation, migration, invasion, and apoptosis of NSCLC cells by regulating high-mobility group box (HMGB) 3 (HMGB3.) NSCLC and adjacent tissues were collected. Reverse transcription quantitative PCR (RT-qPCR) was employed to detect expression of miR-758 and HMGB3 in NSCLC and adjacent tissues, in BEAS-2B cells and NSCLC cell lines. The targetted relationship between miR-758 and HMGB3 was identified by dual luciferase reporter gene assay. The effects of miR-758 on proliferation, migration, invasion, cell cycle, and apoptosis of A549 cells. MiR-758 expression was lower in NSCLC tissues, which was opposite to HMGB3 expression. The results also demonstrated that miR-758 can target HMGB3. The cells transfected with miR-758 mimic had decreased HMGB3 expression, proliferation, migration, and invasion, with more arrested cells in G1 phase and increased apoptosis. Our results supported that the overexpression of miR-758 inhibits proliferation, migration, and invasion, and promotes apoptosis of NSCLC cells by negative regulating HMGB2. The present study may provide a novel target for NSCLC treatment.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , HMGB3 Protein/genetics , Lung Neoplasms/pathology , MicroRNAs/genetics , A549 Cells , Apoptosis/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Cell Movement/physiology , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , HMGB3 Protein/metabolism , Humans , Lung Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...