Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chin Med Sci J ; 25(3): 176-81, 2010 Sep.
Article in English | MEDLINE | ID: mdl-21180280

ABSTRACT

OBJECTIVE: To simulate and assess the clinical effect of intracoronary infusion of bone marrow mononuclear cells or peripheral endothelial progenitor cells on myocardial reperfusion injury in mini-swine model. METHODS: Twenty-three mini-swine with myocardial reperfusion injury were used as designed in the study protocol. About (3.54 +/- 0.90) x 10(8) bone marrow mononuclear cells (MNC group, n = 9) or (1.16 +/- 1.07) x 10(7) endothelial progenitor cells (EPC group, n = 7) was infused into the affected coronary segment of the swine. The other mini-swine were infused with phosphate buffered saline as control (n = 7). Echocardiography and hemodynamic studies were performed before and 4 weeks after cell infusion. Myocardium infarction size was calculated. Stem cell differentiation was analyzed under a transmission electromicroscope. RESULTS: Left ventricular ejection fraction dropped by 0% in EPC group, 2% in MNC group, and 10% in the control group 4 weeks after cell infusion, respectively (P < 0.05). The systolic parameters increased in MNC and EPC groups but decreased in the control group. However, the diastolic parameters demonstrated no significant change in the three groups (P > 0.05). EPC decreased total infarction size more than MNC did (1.60 +/- 0.26 cm2 vs. 3.71 +/- 1.38 cm2, P < 0.05). Undermature endothelial cells and myocytes were found under transmission electromicroscope. CONCLUSIONS: Transplantation of either MNC or EPC may be beneficial to cardiac systolic function, but might not has obvious effect on diastolic function. Intracoronary infusion of EPC might be better than MNC in controlling infarction size. Both MNC and EPC may stimulate angiogenesis, inhibit fibrogenesis, and differentiate into myocardial cells.


Subject(s)
Bone Marrow Cells/cytology , Bone Marrow Transplantation , Endothelial Cells/cytology , Myocardial Reperfusion Injury/therapy , Stem Cells/cytology , Animals , Cell Differentiation , Myocardial Reperfusion Injury/pathology , Myocardium/pathology , Swine , Swine, Miniature
SELECTION OF CITATIONS
SEARCH DETAIL
...