Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phytochemistry ; 195: 113058, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34942558

ABSTRACT

Lemongrass essential oil has antifungal and anti-cancerous properties. Heat-shock protein (HSP90), an ATP-dependent molecular chaperone found in eukaryotes, is involved in protein folding, stability, and disease, making it a promising research topic. Both in silico and in vitro approaches were used to provide a clear insight into the HSP90-ATPase 3D structures, activity, and their interaction with the essential oil constituents among various species such as fungi (S. cerevisiae), parasites (P. falciparum), and humans. For in silico studies, sequence alignment, docking (AutoDock), and absorption, distribution, metabolism, and excretion (ADME) properties were evaluated to obtain hit compounds specifically against each HSP90-ATPase. The hit compounds obtained were evaluated for their efficacy in the in vitro studies of S. cerevisiae. In vitro studies were carried out targeting HSP90-ATPases via lemongrass essential oil components individually and in combination as a function of concentration and various salt concentrations. Results suggest that sequence alignment exists of over 75% among these three species. The best docking score was possessed by Geraniol and its constituent (geldanamycin ≥ -4.93 kcal/mol) (a known antifungal and antitumor against HSP90) in all the above species. Lemongrass oil and the combination of Geraniol and Citral at concentrations of 80 µg/mL showed the maximum inhibition of ATPase and HSP90-ATPase activity compared to their individual treatment. Therefore, both in silico and in vitro studies provide clear evidence of specific inhibitory action of lemongrass oil, Geraniol, and Citral against the ATPase and HSP90-ATPase activities and might show potential as antifungal and antitumor drugs.


Subject(s)
Oils, Volatile , Saccharomyces cerevisiae , Acyclic Monoterpenes
2.
Toxicol Rep ; 5: 489-496, 2018.
Article in English | MEDLINE | ID: mdl-29854620

ABSTRACT

The essential oil of Cymbopogon flexuosus or lemongrass oil (LO) is reported to have antibacterial, antifungal and anticancerous effects. HSP90 is one of the major chaperones responsible for the proper folding of cancer proteins. In this paper we show that the essential oil of C. flexuosus significantly suppresses the HSP90 gene expression. The cytotoxicity of the compounds was tested by MTT assay and the gene expression studies were carried out using HEK-293 and MCF-7 cells. Also we tested the efficacy of the major component of this essential oil viz. citral and geraniol in inhibiting the HSP90 expression. The oil was found to be more cytotoxic to MCF-7 cells with different IC50 values for the oil (69.33 µg/mL), citral (140.7 µg/mL) and geraniol (117 µg/mL). The fold change of expression was calculated by RT-qPCR using ΔΔCt (2^-ΔΔCt) method and it was 0.1 and 0.03 in MCF-7 cells at 80 µg/mL and 160 µg/mL of LO. Western blot results showed suppression of HSP90 protein expression and HSP90 - ATPase activity inhibition was also observed using LO. This study shows the anticancer mechanism exhibited by the essential oil of C. flexuosus is by the inhibition of the important chaperone protein HSP90.

3.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1036-1037: 50-56, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27710890

ABSTRACT

Citral is a widely used monoterpene aldehyde in aromatherapy, food and pesticide industries. A new validated reverse phase high performance liquid chromatography (RP - HPLC) procedure for the detection and quantification of cis-trans isomers of citral was developed. The RP-HPLC analysis was carried out using Enable C - 18G column (250×4.6mm, 5µ), with acetonitrile and water (70: 30) mobile phase in isocratic mode at 1mL/min flow. A photodiode array (PDA) detector was set at 233nm for the detection of citral. The method showed linearity, selectivity and accuracy for citral in the range of 3-100µg/mL. In order to compare the new RP-HPLC method with the available methods, one of the commercially available essential oil from Cymbopogon flexuosus was analyzed using new RP-HPLC method and the same was analyzed using GC-MS for the comparison of the method for the detection of citral. The GC-MS analysis was done using mass selective detector (MSD) showed citral content to be of 72.76%; wherein the new method showed to contain that same at 74.98%. To prove the application of the new method, essential oils were extracted from lemongrass, lemon leaves and mosambi peels by steam distillation. The citral content present in the essential and also in the condensate was analyzed. The method was found to be suitable for the analysis of citral in essential oils and water based citral formulations with a very good resolution of its components geranial and neral.


Subject(s)
Chromatography, High Pressure Liquid/methods , Chromatography, Reverse-Phase/methods , Citrus/chemistry , Cymbopogon/chemistry , Monoterpenes/analysis , Oils, Volatile/analysis , Acyclic Monoterpenes , Fruit/chemistry , Gas Chromatography-Mass Spectrometry/methods , Plant Leaves/chemistry
4.
Appl Biochem Biotechnol ; 164(1): 68-76, 2011 May.
Article in English | MEDLINE | ID: mdl-21038111

ABSTRACT

ß-Glucosidases (EC 3.2.1.21) are industrially important glycosyl hydrolases used for cellulose saccharification as well as for synthesis of glyco-conjugates. Crystal structure of only one ß-glucosidase of family 3 of the glycosyl hydrolase families is available due to difficulty in purification of these closely related enzymes from a given source. Multiple steps used during purification result in low yield, making it difficult to study their properties. Conditions for purification of two closely related ß-glucosidases (BGL I and BGL II) of family 3 from Pichia etchellsii were investigated in this study. Two weak anion exchange columns convective interaction media-diethyl amino ethyl (CIM-DEAE) and CIM-ethylenediamine (CIM-EDA) were used for this purpose. The results obtained at 0.34 ml disk (CIM-DEAE) level were scaled up to 8 ml CIM-DEAE tube column wherein BGL I and BGL II were separated from the major contaminants in the cell-free extract. The recovered enzymes were completely resolved in the second step using CIM-EDA. A final specific activity of 9,180 IU/mg and 2,345.3 IU/mg was achieved for BGL I and BGL II respectively with an overall yield of 33%. The system should be applicable to resolution of other closely related enzymes from this family.


Subject(s)
Cellulases/isolation & purification , Chromatography, Ion Exchange/methods , Fungal Proteins/isolation & purification , Isoenzymes/isolation & purification , Cell Culture Techniques , Cellulases/biosynthesis , Cellulose/metabolism , Electrophoresis, Polyacrylamide Gel , Enzyme Stability , Fungal Proteins/biosynthesis , Isoenzymes/biosynthesis , Pichia/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...