Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Heliyon ; 8(6): e09708, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35756115

ABSTRACT

Globally, many populations suffer from a lack of access to basic sanitation facilities. This is partly caused by a combination of water resource shortages and the high cost of conventional centralised treatment systems. A novel decentralised treatment technology based on sub-critical hydrothermal processing of organic wastes at toilet-scale, contributes to addressing these economic and resource limitations. To be effective, this technology needs to satisfy a broad range of environmental and safety considerations, including the nature and quantity of formed gas products. We investigated the impact of four process parameters (temperature; O2: COD ratio (λ); time; feed solids content) on off-gas composition by quantifying volatile organic compounds (VOCs), CO, H2 and CO2 in factorial experiments. Temperature and λ influenced VOCs generation greatly. The lowest VOC emissions occurred at 200% λ and 300 °C. Aldehydes and ketones were mostly generated at 200% λ and intermediate temperatures, sulphur compounds in the absence of oxygen, and aromatics, furans, and pyrroles at intermediate oxygen levels and elevated temperatures. Most CO was created at 300 °C but its concentration decreased at longer processing times. Processing conditions have complex impacts and require careful consideration when designing for real world deployment.

2.
J Environ Manage ; 253: 109704, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31654926

ABSTRACT

Hydrothermal processing as a post-treatment technology for sludge has attracted great interest globally as it could reduce the amount of sludge considerably. This experimental study developed a comprehensive kinetic model of cellulose degradation via non-oxidative hydrothermal processing at various temperatures (ranges 180-260 °C). Values of activation energies and pre-exponential factors were determined using chemical oxygen demand (COD)-based lumped concentrations. In this study, a new reaction pathway between solid, soluble matter and gaseous products was proposed which not only enables prediction of solid phase degradation but also can predict the formation of various types of products (in liquid and gas phase) during the reaction time. The results show that the reaction rate of cellulose to liquid products (k1=2.7×109exp(-102810RT)) were fast compared to that of for liquid products to gaseous products (k2=4.4×103exp(-64629RT)). Moreover, the model infers that the major part of solid degradation leads to the formation of the gaseous product with the reaction rate constant of k3=5.7exp(-12905RT). The proposed model can provide an opportunity to predict the performance of the non-oxidative hydrothermal processing of organic solid waste.


Subject(s)
Gases , Sewage , Biological Oxygen Demand Analysis , Kinetics , Temperature
3.
Bioengineering (Basel) ; 6(4)2019 Oct 09.
Article in English | MEDLINE | ID: mdl-31600906

ABSTRACT

The rheology of high-cell density (HCD) cultures is an important parameter for its impact on mixing and sparging, process scale-up, and downstream unit operations in bioprocess development. In this work, time-dependent rheological properties of HCD Pseudomonas putida LS46 cultures were monitored for microbial polyhydroxyalkanoate (PHA) production. As the cell density of the fed-batch cultivation increased (0 to 25 g·L-1 cell dry mass, CDM), the apparent viscosity increased nearly nine-fold throughout the fed-batch process. The medium behaved as a nearly Newtonian fluid at lower cell densities, and became increasingly shear-thinning as the cell density increased. However, shear-thickening behavior was observed at shearing rates of approximately 75 rad·s-1 or higher, and its onset increased with viscosity of the sample. The supernatant, which contained up to 9 g·L-1 soluble organic material, contributed more to the observed viscosity effect than did the presence of cells. Owing to this behavior, the oxygen transfer performance of the bioreactor, for otherwise constant operating conditions, was reduced by 50% over the cultivation time. This study has shown that the dynamic rheology of HCD cultures is an important engineering parameter that may impact the final outcome in PHA cultivations. Understanding and anticipating this behavior and its biochemical origins could be important for improving overall productivity, yield, process scalability, and the efficacy of downstream processing unit operations.

4.
Bioengineering (Basel) ; 6(4)2019 Sep 26.
Article in English | MEDLINE | ID: mdl-31561519

ABSTRACT

High cell density (HCD) fed-batch cultures are widely perceived as a requisite for high-productivity polyhydroxyalkanoate (PHA) cultivation processes. In this work, a reactive pulse feed strategy (based on real-time CO2 or dissolved oxygen (DO) measurements as feedback variables) was used to control an oxygen-limited fed-batch process for improved productivity of medium chain length (mcl-) PHAs synthesized by Pseudomonas putida LS46. Despite the onset of oxygen limitation half-way through the process (14 h post inoculation), 28.8 ± 3.9 g L-1 total biomass (with PHA content up to 61 ± 8% cell dry mass) was reliably achieved within 27 h using octanoic acid as the carbon source in a bench-scale (7 L) bioreactor operated under atmospheric conditions. This resulted in a final volumetric productivity of 0.66 ± 0.14 g L-1 h-1. Delivering carbon to the bioreactor as a continuous drip feed process (a proactive feeding strategy compared to pulse feeding) made little difference on the final volumetric productivity of 0.60 ± 0.04 g L-1 h-1. However, the drip feed strategy favored production of non-PHA residual biomass during the growth phase, while pulse feeding favored a higher rate of mcl-PHA synthesis and yield during the storage phase. Overall, it was shown that the inherent O2-limitation brought about by HCD cultures can be used as a simple and effective control strategy for mcl-PHA synthesis from fatty acids. Furthermore, the pulse feed strategy appears to be a relatively easy and reliable method for rapid optimization of fed-batch processes, particularly when using toxic substrates like octanoic acid.

5.
Front Microbiol ; 10: 1873, 2019.
Article in English | MEDLINE | ID: mdl-31474959

ABSTRACT

Metabolic flexibility in aerobic methane oxidizing bacteria (methanotrophs) enhances cell growth and survival in instances where resources are variable or limiting. Examples include the production of intracellular compounds (such as glycogen or polyhydroxyalkanoates) in response to unbalanced growth conditions and the use of some energy substrates, besides methane, when available. Indeed, recent studies show that verrucomicrobial methanotrophs can grow mixotrophically through oxidation of hydrogen and methane gases via respiratory membrane-bound group 1d [NiFe] hydrogenases and methane monooxygenases, respectively. Hydrogen metabolism is particularly important for adaptation to methane and oxygen limitation, suggesting this metabolic flexibility may confer growth and survival advantages. In this work, we provide evidence that, in adopting a mixotrophic growth strategy, the thermoacidophilic methanotroph, Methylacidiphilum sp. RTK17.1 changes its growth rate, biomass yields and the production of intracellular glycogen reservoirs. Under nitrogen-fixing conditions, removal of hydrogen from the feed-gas resulted in a 14% reduction in observed growth rates and a 144% increase in cellular glycogen content. Concomitant with increases in glycogen content, the total protein content of biomass decreased following the removal of hydrogen. Transcriptome analysis of Methylacidiphilum sp. RTK17.1 revealed a 3.5-fold upregulation of the Group 1d [NiFe] hydrogenase in response to oxygen limitation and a 4-fold upregulation of nitrogenase encoding genes (nifHDKENX) in response to nitrogen limitation. Genes associated with glycogen synthesis and degradation were expressed constitutively and did not display evidence of transcriptional regulation. Collectively these data further challenge the belief that hydrogen metabolism in methanotrophic bacteria is primarily associated with energy conservation during nitrogen fixation and suggests its utilization provides a competitive growth advantage within hypoxic habitats.

6.
Chemosphere ; 232: 304-314, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31154192

ABSTRACT

The fraction of pollutant converted to CO2 versus biomass in biofiltration influences the process efficacy and the lifetime of the bed due to pressure drop increases. This work determined the relative quantitative importance and potential interactions between three critical environmental parameters: toluene concentration (Tol), matric potential (ψ) and temperature (T) on % CO2, elimination capacity (EC) and the production rate of non-CO2 products. These parameters are the most variable in typical biofilter operation. The data was fit to a non-linear model of the form y=a(Tol)bTcψd. A rigorous carbon balance (100.5 ±â€¯7.0%) tracked the fate of degraded toluene as CO2 and non-CO2 carbon endpoints. The % CO2 mineralization varied from (34-91%) with environmental parameters: temperature (20-40 °C), matric potential, (-10 to -100 cmH2O) and residual toluene, (20-180 ppm). The highest conversion to CO2 was at the wettest conditions (-10 cmH2O) and lowest residual toluene concentration (18 ppm). Matric potential had twice the impact of toluene concentration on % CO2, while temperature had less impact. The elimination capacity varied from 11 to 50 gC⋅m-3h-1 and was highest at 40 °C, the wettest conditions with limited impact by toluene concentrations. Temperature increased the EC and non-CO2 production rates strongly while matric potential and toluene concentration had less influence (4x - 10x less). This study illustrated the quantitative significance and simultaneous interaction between critical environmental parameters on carbon endpoints and biofilter performance. This kind of multivariable parameter study provides valuable insights which can address performance and clogging issues in biofilters.


Subject(s)
Carbon Dioxide/chemistry , Extracellular Polymeric Substance Matrix , Filtration , Toluene/chemistry , Biodegradation, Environmental , Biomass , Carbon , Pressure , Soil , Temperature
7.
World J Microbiol Biotechnol ; 34(8): 106, 2018 Jul 03.
Article in English | MEDLINE | ID: mdl-29971506

ABSTRACT

Polyhydroxyalkanoates (PHAs) are a diverse class of bio-polymers synthesized by bacteria, usually during imbalanced growth conditions. Optimizing PHA productivity is highly dependent on the bioreactor oxygen transfer rate (OTR), which is an important consideration for process performance and economics, particularly with increasing scale. Relatively few in-depth studies are available regarding the effect of OTR and dissolved oxygen content (DOC) on PHA formation, synthesis rates, composition, and characteristics. This review examines past research studies on the effect of low DOC environments on production of short-chain length (scl-) PHAs, synthesized by both pure and mixed cultures, in order to identify opportunities and gaps concerning the effect of DOC on production of medium-chain length (mcl-) PHAs, an area that has not been studied in detail. The literature indicates that production of scl-PHA (a reductive process) acts as an electron sink allowing cells to maintain balanced redox state at low DOC. Conversely, production of mcl-PHA via fatty acid de novo synthesis (also a reductive process) does not occur to any significant extent in low DOC environments, while mcl-PHA synthesis from fatty acids (an oxidative process) can be promoted in low DOC environments. The monomer composition, molecular mass, as well as physical and thermal properties of the polymer can change in response to OTR, but further research in this area is required for both scl- and mcl-PHAs. Process design and management of bioreactor OTR in PHA production might therefore be directed by the final application of the polymer rather than cost considerations.


Subject(s)
Bacteria/metabolism , Oxygen/chemistry , Oxygen/metabolism , Polyhydroxyalkanoates/biosynthesis , Bioreactors , Carbohydrate Metabolism , Carbohydrates , Fatty Acids/metabolism , Fermentation , Polyhydroxyalkanoates/chemistry
8.
Appl Microbiol Biotechnol ; 102(15): 6437-6449, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29799090

ABSTRACT

Economical production of medium-chain length polyhydroxyalkanoates (mcl-PHA) is dependent on efficient cultivation processes. This work describes growth and mcl-PHA synthesis characteristics of Pseudomonas putida LS46 when grown on medium-chain length fatty acids (octanoic acid) and lower-cost long-chain fatty acids (LCFAs, derived from hydrolyzed canola oil) in microaerophilic environments. Growth on octanoic acid ceased when the oxygen uptake rate was limited by the oxygen transfer rate, and mcl-PHA accumulated to 61.9% of the cell dry mass. From LCFAs, production of non-PHA cell mass continued at a rate of 0.36 g L-1 h-1 under oxygen-limited conditions, while mcl-PHA accumulated simultaneously to 31% of the cell dry mass. The titer of non-PHA cell mass from LCFAs at 14 h post-inoculation was double that obtained from octanoic acid in bioreactors operated with identical feeding and aeration conditions. While the productivity for octanoic acid was higher by 14 h, prolonged cultivation on LCFAs achieved similar productivity but with twice the PHA titer. Simultaneous co-feeding of each substrate demonstrated the continued cell growth under microaerophilic conditions characteristic of LCFAs, and the resulting polymer was dominant in C8 monomers. Furthermore, co-feeding resulted in improved PHA titer and volumetric productivity compared to either substrate individually. These results suggest that LCFAs improve growth of P. putida in oxygen-limited environments and could reduce production costs since more non-PHA cell mass, the cellular factories required to produce mcl-PHA and the most oxygen-intensive cellular process, can be produced for a given oxygen transfer rate.


Subject(s)
Carbon/metabolism , Fatty Acids/chemistry , Industrial Microbiology , Polyhydroxyalkanoates/biosynthesis , Pseudomonas putida/metabolism , Bioreactors , Pseudomonas putida/growth & development
9.
Bioresour Technol ; 262: 333-337, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29754765

ABSTRACT

The aim of this study was to investigate the impact of mixing intensity and mixing flow patterns on solid waste degradation, and production of valuable intermediate by-products such as acetic acid. Total suspended solids generally decreased, soluble chemical oxygen demand, dissolved organic carbon, and acetic acid concentration generally increased with the progress of the reaction and increase in the mixing intensity. The results showed that axial-radial flow pattern (using pitch blade impeller) and medium impeller speed (500 rpm) resulted in a higher degree of solid degradation and production of acetic acid.


Subject(s)
Acetic Acid/chemistry , Bioreactors , Carbon/chemistry , Biological Oxygen Demand Analysis , Hydrodynamics , Oxidation-Reduction , Waste Disposal, Fluid
10.
Water Res ; 140: 1-11, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29679930

ABSTRACT

Organic waste residues can be hydrothermally treated to produce organic acid rich liquors. These hydrothermal liquors are a potential feedstock for polyhydroxyalkanoate (PHA) production. We investigated the effect of dissolved oxygen concentration and substrate feeding regimes on PHA accumulation and yield using two hydrothermal liquors derived from a mixture of primary and secondary municipal wastewater treatment sludge and food waste. The enriched culture accumulated a maximum of 41% PHA of cell dry weight within 7 h; which is among the highest reported for N and P rich hydrothermal liquors. Recovered PHA was 77% polyhydroxybutyrate and 23% polyhydroxyvalerate by mass. The families Rhodocyclaceae (84%) and Saprospiraceae (20.5%) were the dominant Proteobacteria (73%) in the enriched culture. The third most abundant bacterial genus, Bdellovibrio, includes species of known predators of PHA producers which may lead to suboptimal PHA accumulation. The PHA yield was directly proportional to DO concentration for ammonia stripped liquor (ASL) and inversely proportional to DO concentration for low strength liquor (LSL). The highest yield of 0.50 Cmol PHA/Cmol substrate was obtained for ASL at 25% DO saturation. A progressively increasing substrate feeding regime resulted in increased PHA yields. These findings demonstrate that substrate feeding regime and oxygen concentration can be used to control the PHA yield and accumulation rate thereby enhancing PHA production viability from nutrient rich biomass streams.


Subject(s)
Bioreactors/microbiology , Biotechnology/methods , Polyhydroxyalkanoates/biosynthesis , Bacteria , Biomass , Biotechnology/instrumentation , Carbon/metabolism , Fermentation , Food , Microbial Consortia/physiology , Nitrogen/metabolism , Sewage/chemistry , Waste Disposal, Fluid , Waste Products , Wastewater
11.
ISME J ; 11(11): 2599-2610, 2017 11.
Article in English | MEDLINE | ID: mdl-28777381

ABSTRACT

Aerobic methanotrophic bacteria have evolved a specialist lifestyle dependent on consumption of methane and other short-chain carbon compounds. However, their apparent substrate specialism runs contrary to the high relative abundance of these microorganisms in dynamic environments, where the availability of methane and oxygen fluctuates. In this work, we provide in situ and ex situ evidence that verrucomicrobial methanotrophs are mixotrophs. Verrucomicrobia-dominated soil communities from an acidic geothermal field in Rotokawa, New Zealand rapidly oxidised methane and hydrogen simultaneously. We isolated and characterised a verrucomicrobial strain from these soils, Methylacidiphilum sp. RTK17.1, and showed that it constitutively oxidises molecular hydrogen. Genomic analysis confirmed that this strain encoded two [NiFe]-hydrogenases (group 1d and 3b), and biochemical assays revealed that it used hydrogen as an electron donor for aerobic respiration and carbon fixation. While the strain could grow heterotrophically on methane or autotrophically on hydrogen, it grew optimally by combining these metabolic strategies. Hydrogen oxidation was particularly important for adaptation to methane and oxygen limitation. Complementary to recent findings of hydrogenotrophic growth by Methylacidiphilum fumariolicum SolV, our findings illustrate that verrucomicrobial methanotrophs have evolved to simultaneously utilise hydrogen and methane from geothermal sources to meet energy and carbon demands where nutrient flux is dynamic. This mixotrophic lifestyle is likely to have facilitated expansion of the niche space occupied by these microorganisms, allowing them to become dominant in geothermally influenced surface soils. Genes encoding putative oxygen-tolerant uptake [NiFe]-hydrogenases were identified in all publicly available methanotroph genomes, suggesting hydrogen oxidation is a general metabolic strategy in this guild.


Subject(s)
Methane/metabolism , Soil Microbiology , Verrucomicrobia/metabolism , Autotrophic Processes , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Genomics , Hydrogenase/genetics , Hydrogenase/metabolism , New Zealand , Oxidation-Reduction , Oxygen/metabolism , Phylogeny , Soil/chemistry , Verrucomicrobia/classification , Verrucomicrobia/genetics , Verrucomicrobia/isolation & purification
12.
Water Res ; 123: 607-622, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28709105

ABSTRACT

The management and disposal of solid waste is of increasing concern across the globe. Hydrothermal processing of sludge has been suggested as a promising solution to deal with the considerable amounts of sludge produced worldwide. Such a process not only degrades organic compounds and reduces waste volume, but also provides an opportunity to recover valuable substances. Hydrothermal processing comprises two main sub-processes: wet oxidation (WO) and thermal hydrolysis (TH), in which the formation of various free radicals results in the production of different intermediates. Volatile fatty acids (VFAs), especially acetic acid, are usually the main intermediates which remain as a by-product of the process. This paper aims to review the fundamental mechanism for hydrothermal processing of sludge, and the formation of different free radicals and intermediates therein. In addition, the proposed kinetic models for the two processes (WO and TH) from the literature are reviewed and the advantages and disadvantages of each model are outlined. The effect of mass transfer as a critical component of the design and development of the processes, which has been neglected in most of these proposed models, is also reviewed, and the effect of influencing parameters on the processes' controlling step (reaction or mass transfer) is discussed.


Subject(s)
Fatty Acids, Volatile , Waste Disposal, Fluid , Hydrolysis , Oxidation-Reduction , Sewage
13.
Water Res ; 114: 254-263, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28254643

ABSTRACT

Hydrothermal processing plays a significant role in sewage sludge treatment. However, the rheological behaviour of sludge during these processes is not fully understood. A better understanding of the sludge rheology under hydrothermal processing conditions can help improve process efficiency. Moreover, sludge rheology is easier to measure than chemical analyses. If a relationship could be established, it provides a possibility of using rheological measurement as a basis for monitoring the performance of hydrothermal processing. The rheological changes in thickened waste activated sludge (7 wt%) was investigated using a pressure cell-equipped rheometer during 60-min thermal hydrolysis (TH) at various temperatures (80-145 °C) and constant pressure (5 bar). Changes in the soluble chemical oxygen demand (COD) were measured using a separate reactor with a similar operating condition. The sludge behaved as a shear-thinning fluid and could be described by the Herschel-Bulkley model. At constant temperature, the yield stress and high-shear (600 s-1) viscosity of sludge decreased logarithmically over 60 min. At constant time, the yield stress and the high-shear viscosity decreased linearly with increasing TH temperature and these values was much less than corresponding properties after treatment and cooling down to 25 °C. The soluble COD of sludge also increased logarithmically over 60 min at constant temperature, and increased linearly with increasing temperature at constant time. Furthermore, the yield stress and high-shear viscosity reduction showed a linear correlation with the increase in soluble COD.


Subject(s)
Sewage/chemistry , Temperature , Models, Theoretical , Rheology , Viscosity
14.
Bioresour Technol ; 226: 229-237, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28006735

ABSTRACT

This study investigates oxidative and non-oxidative hydrothermal processing of cellulose at five different temperatures (180-260°C). Volatile fatty acids (VFAs) concentration, total suspended solid (TSS) degradation, dissolved organic carbon (DOC) and chemical oxygen demand (COD) were measured and compared in both processes. Moreover, the existence of hydrogen peroxide in both oxidative and non-oxidative processes was confirmed experimentally for the first time in literature. At temperatures ⩽220°C the amount of H2O2 produced in the oxidative process was higher (50 fold) than that of in the non-oxidative while at higher temperatures (⩾240°C) it was more for non-oxidative (3.5-5 fold). The concentration of VFAs in the non-oxidative process was lower than 10% of that in oxidative process. In both processes soluble COD increased with time and temperature, however at 260°C after reaching a maximum, it decreased with time due to conversion of some soluble intermediates to CO2 and water.


Subject(s)
Cellulose/metabolism , Fatty Acids, Volatile/metabolism , Hydrogen Peroxide/chemistry , Oxygen/chemistry , Acetic Acid/chemistry , Biological Oxygen Demand Analysis , Carbon/chemistry , Free Radicals , Hot Temperature , Oxidation-Reduction , Particle Size , Solubility , Water
15.
Bioresour Technol ; 205: 280-5, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26832394

ABSTRACT

The current study investigated the formation of organic acids and alcohols as major intermediate products of wet oxidation of municipal sludge. Municipal sludge was subjected to 60-min wet oxidation at temperatures ranging from 220 to 240°C, with 20bar oxygen partial pressure. Acetic acid was the main intermediate compound produced in this study, followed by propionic, n-butyric, iso-butyric and pentanoic acids and methanol. It was found that the process severity has a significant influence on the formation and degradation of these intermediate products.


Subject(s)
Sewage/chemistry , Waste Management/methods , Acetic Acid/chemistry , Methanol/chemistry , Molecular Weight , Organic Chemicals/chemistry , Oxidation-Reduction , Pentanoic Acids/chemistry , Propionates/chemistry , Temperature
16.
Water Res ; 87: 225-36, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26426294

ABSTRACT

Wet oxidation is a successful process for the treatment of municipal sludge. In addition, the resulting effluent from wet oxidation is a useful carbon source for subsequent biological nutrient removal processes in wastewater treatment. Owing to limitations with current kinetic models, this study produced a kinetic model which predicts the concentrations of key intermediate components during wet oxidation. The model was regressed from lab-scale experiments and then subsequently validated using data from a wet oxidation pilot plant. The model was shown to be accurate in predicting the concentrations of each component, and produced good results when applied to a plant 500 times larger in size. A statistical study was undertaken to investigate the validity of the regressed model parameters. Finally the usefulness of the model was demonstrated by suggesting optimum operating conditions such that volatile fatty acids were maximised.


Subject(s)
Fatty Acids, Volatile/chemistry , Models, Theoretical , Sewage/chemistry , Waste Disposal, Fluid/methods , Kinetics , Oxidation-Reduction , Pilot Projects
17.
Bioresour Technol ; 170: 100-107, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25125197

ABSTRACT

A hybrid technique incorporating a wet oxidation stage and secondary fermentation step was used to process Pinus radiata pulp mill effluent sludge. The effect of hydrothermal oxidation at high temperature and pressure on the hydrolysis of constituents of the waste stream was studied. Biochemical acidogenic potential assays were conducted to assess acid production resulting from anaerobic hydrolysis of the wet oxidised hydrolysate under acidogenic conditions. Significant degradation of the lignin, hemicellulose, suspended solids, carbohydrates and extractives were observed with wet oxidation. In contrast, cellulose showed resistance to degradation under the experimental conditions. Extensive degradation of biologically inhibitory compounds by wet oxidation did not show a beneficial impact on the acidogenic or methanogenic potential compared to untreated samples.


Subject(s)
Fermentation , Paper , Pinus/chemistry , Waste Disposal, Fluid/methods , Waste Products/analysis , Water Purification/methods , Anaerobiosis , Analysis of Variance , Carbon/analysis , Hot Temperature , Hydrolysis , Lignin/isolation & purification , Magnetic Resonance Spectroscopy , Nitrogen/analysis , Oxidation-Reduction , Polysaccharides/isolation & purification , Pressure , Resins, Plant/isolation & purification
18.
Bioresour Technol ; 155: 289-99, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24457302

ABSTRACT

With rapid world population growth and strict environmental regulations, increasingly large volumes of sludge are being produced in today's wastewater treatment plants (WWTP) with limited disposal routes. Sludge treatment has become an essential process in WWTP, representing 50% of operational costs. Sludge destruction and resource recovery technologies are therefore of great ongoing interest. Hydrothermal processing uses unique characteristics of water at elevated temperatures and pressures to deconstruct organic and inorganic components of sludge. It can be broadly categorized into wet oxidation (oxidative) and thermal hydrolysis (non-oxidative). While wet air oxidation (WAO) can be used for the final sludge destruction and also potentially producing industrially useful by-products such as acetic acid, thermal hydrolysis (TH) is mainly used as a pre-treatment method to improve the efficiency of anaerobic digestion. This paper reviews current hydrothermal technologies, roles of wet air oxidation and thermal hydrolysis in sludge treatment, and challenges faced by these technologies.


Subject(s)
Biofuels , Hot Temperature , Models, Chemical , Pressure , Sewage/chemistry , Waste Disposal, Fluid/methods , Biological Oxygen Demand Analysis , Hydrolysis , Kinetics , Oxidation-Reduction
19.
Bioresour Technol ; 148: 605-10, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24055004

ABSTRACT

Individual and interactive effects of process variables on the degradation of fermented municipal sludge were examined during wet oxidation. The process was carried out at 220-240°C using 1:1-2:1 oxygen to biomass ratio and 300-500 rpm stirring speed. Response surface methodology coupled with a faced-centred central composite design was used to evaluate the effect of these variables on total suspended solids, volatile suspended solids and total chemical oxygen demand. Multivariate analysis was conducted for the initial and near completion stages of reaction: 5 and 60 min treatments, respectively. Temperature had the most significant effect on degradation rate throughout. During the initial stage the effect of mixing intensity was less significant than that of oxygen ratio. Mixing intensity did not influence degradation rate at the later stage in the process. During the near completion stage, the interaction of temperature and oxygen ratio had significant effect on sludge degradation.


Subject(s)
Biotechnology/methods , Cities , Sewage/chemistry , Water/chemistry , Analysis of Variance , Catalysis , Fermentation , New Zealand , Oxidation-Reduction , Regression Analysis
20.
Bioresour Technol ; 146: 294-300, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23948266

ABSTRACT

In order to remove wood extractive compounds from pulp mill sludge and thereby enhancing anaerobic digestibility, samples were subjected to either oxidative hydrothermal treatment (wet oxidation) or non-oxidative hydrothermal treatment (thermal hydrolysis). Treatments were carried out at 220 °C with initial pressure of 20 bar. More than 90% destruction of extractive compounds was observed after 20 min of wet oxidation. Wet oxidation eliminated 95.7% of phenolics, 98.6% fatty acids, 99.8% resin acids and 100% of phytosterols in 120 min. Acetic acid concentration increased by approximately 2 g/l after 120 min of wet oxidation. This has potential for rendering sludge more amenable to anaerobic digestion. In contrast thermal hydrolysis was found to be ineffective in degrading extractive compounds. Wet oxidation is considered to be an effective process for removal of recalcitrant and inhibitive compounds through hydrothermal pre-treatment of pulp mill sludge.


Subject(s)
Industrial Waste , Sewage , Waste Disposal, Fluid/methods , Wood/chemistry , Acetic Acid/chemistry , Biodegradation, Environmental , Carbon/chemistry , Equipment Design , Fatty Acids/chemistry , Hydrogen-Ion Concentration , Hydrolysis , Oxidation-Reduction , Oxygen/chemistry , Paper , Phytosterols/chemistry , Pinus , Pressure , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...