Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 15(44): 19487-95, 2013 Nov 28.
Article in English | MEDLINE | ID: mdl-24129634

ABSTRACT

Electrodeposition methods are used to generate a sparse array of platinum nanoparticles on a glassy carbon electrode. Specifically electrodeposition from a 1 mM solution of H2PtCl6 in 0.5 M H2SO4 leads to surface coverages of 0.46% to 1.96% and nanoparticles of size 29 nm to 136 nm in diameter, using deposition times of 30 and 15 seconds. The reduction of oxygen at an array of 29 nm nanoparticles with a surface coverage of 0.46% showed voltammetric signals with a scan rate dependence consistent with a two electron reduction of O2 to H2O2 with the rate proportional to K0 exp(-α(E-Ef(0))/RT) and formal potential (Ef(0)) of -0.058 V vs. SHE, a standard electrochemical rate constant (k0) of ~10 cm s(-1) and a transfer coefficient (α) of 0.23. At higher Pt nanoparticle coverages, a scan rate dependence consistent with the partial further reduction of H2O2 to water becomes evident.

2.
Nanoscale ; 5(16): 7304-11, 2013 Aug 21.
Article in English | MEDLINE | ID: mdl-23817387

ABSTRACT

Intense current research is directed at the evaluation of nanomaterials as catalysts for the oxygen reduction reaction. This is commonly undertaken by means of voltammetric measurements supported on an electrode surface presumed inert other than for providing electrical contact. At their basis these factors usually involve measurement of a current or current density, measured at a fixed potential. However we now report that the current/current density at a fixed potential can vary with the surface coverage of the nanoparticles in the catalyst, without any change in fundamental kinetic or thermodynamic parameters, even though the voltammetric signal shows that the reduction is fully transport controlled. This finding leads us to the conclusion that caution should be expressed when comparing catalysts in this way. In particular the essential need is emphasised for characterising the coverage, porosity and particle size, when inferring inherent electrochemical activity and using a suitable physical model to extract catalytic parameters.


Subject(s)
Nanostructures/chemistry , Oxygen/chemistry , Catalysis , Electrodes , Oxidation-Reduction , Particle Size , Porosity , Thermodynamics
3.
ACS Nano ; 4(1): 55-64, 2010 Jan 26.
Article in English | MEDLINE | ID: mdl-20030362

ABSTRACT

Solution phase triangular silver nanoplates (TSNP) with versatile tunability throughout the visible-NIR wavelengths are presented as highly sensitive localized surface plasmon refractive index sensors. A range of 20 TSNP solutions with edge lengths ranging from 11 to 200 nm and aspect ratios from 2 to 13 have been studied comprehensively using AFM, TEM, and UV-vis-NIR spectroscopy. Studies of the localized surface plasmon resonance (LSPR) peak's sensitivity to refractive index changes are performed using a simple sucrose concentration method whereby the surrounding refractive index can solely be changed without variation in any other parameter. The dependence of the TSNP localized surface plasmon resonance (LSPR) peak wavelength lambda(max) and its bulk refractive index sensitivity on the nanoplate's structure is determined. LSPR sensitivities are observed to increase linearly with lambda(max) up to 800 nm, with the values lying within the upper limit theoretically predicted for optimal sensitivity, notwithstanding any diminution due to ensemble averaging. A nonlinear increase in sensitivity is apparent at wavelengths within the NIR region with values reaching 1096 nm.RIU(-1) at lambda(max) 1093 nm. Theoretical studies performed using a simple aspect ratio dependent approximation method and discrete dipole approximation methods confirm the dependence of the LSPR bulk refractive index sensitivity upon the TSNP aspect ratio measured experimentally. These studies highlight the importance of this key parameter in acquiring such high sensitivities and promote these TSNP sols for sensing applications at appropriate wavelengths for biological samples.


Subject(s)
Metal Nanoparticles/chemistry , Silver/chemistry , Surface Plasmon Resonance/methods , Microscopy, Atomic Force , Solutions , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...