Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37579604

ABSTRACT

A hybrid immunoaffinity LC-MS/MS assay was developed and validated for the quantitation of total antibody (TAb) from an antibody drug conjugate (ADC) PYX-201 in human plasma. PYX-201 was proteolyzed using trypsin, and a characteristic peptide fragment PYX-201 P1 with ten amino acids IPPTFGQGTK from the complementarity-determining regions (CDRs) was used as a surrogate for the quantitation of the TAb from PYX-201. Stable isotope labelled (SIL) peptide I(13C6, 15N)PPTFG(13C9, 15N)QGTK was used as the internal standard (IS). We performed chromatographic analysis using a Waters Acquity BEH Phenyl column (2.1 mm × 50 mm, 1.7 µm). Quantification of PYX-201 TAb was carried out on a Sciex triple quadrupole mass spectrometer API 6500 using multiple reaction monitoring (MRM) mode with positive electrospray ionization. To validate PYX-201 TAb, a concentration range of 0.0500 µg/mL to 20.0 µg/mL was used, yielding a correlation coefficient (r) of ≥ 0.9947. For intra-assay measurements, the percent relative error (%RE) ranged from -23.2% to 1.0%, with a coefficient of variation (%CV) of ≤ 14.2%. In terms of inter-assay measurements, the %RE was between -10.5% and -5.7%, with a %CV of ≤ 12.7%. The average recovery of the analyte was determined to be 81.4%, while the average recovery of the internal standard (IS) was 97.2%. Furthermore, PYX-201 TAb demonstrated stability in human plasma and human whole blood under various tested conditions. This assay has been successfully applied to human sample analysis to support a clinical study.


Subject(s)
Peptide Fragments , Tandem Mass Spectrometry , Humans , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Reproducibility of Results
2.
Anal Chem ; 87(16): 8564-72, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26177943

ABSTRACT

Selective ion-ionophore complexation in a polymeric membrane is crucial to various sensing applications. In this work, we report on a novel voltammetric approach based on a thin polymeric membrane to determine the stoichiometry and overall formation constant of an ion-ionophore complex. With this approach, a ∼1.6 µm thick ionophore-doped membrane contacts an aqueous solution containing an excess amount of a target ion to facilitate voltammetric ion transfer across the membrane/water interface. Advantageously, the resultant thin-layer voltammogram shows no diffusional effect, which simplifies the theoretical modeling and quantitative analysis of the voltammogram. We predict theoretically that the complexation stoichiometry affects not only the peak current and peak potential of the thin-layer voltammogram, but also the symmetry of the peak shape with respect to the peak potential. Experimentally, a symmetric voltammogram ensures the formation of a 1:1 complex for a Na(+)-selective ionophore. By contrast, the asymmetric shape and peak current of voltammograms are used to demonstrate that a Ca(2+)-selective ionophore forms 1:3 and 1:2 complexes with calcium and magnesium ions, respectively. The complexation stoichiometry is needed to yield the formation constants that are consistent with those determined previously by potentiometry. In addition, both 1:2 and 1:1 complexes are voltammetrically observed with another Na(+)-selective ionophore, which was assumed to form only a 1:2 complex in previous potentiometric studies. The formation constants of both complexes are determined from a single voltammogram to reveal that the preceding formation of a 1:2 complex thermodynamically hampers the voltammetric observation of a 1:1 complex.

3.
Anal Chem ; 87(10): 5348-55, 2015.
Article in English | MEDLINE | ID: mdl-25925866

ABSTRACT

Cation-exchange extraction of polypeptide protamine from water into an ionophore-based polymeric membrane has been hypothesized as the origin of a potentiometric sensor response to this important heparin antidote. Here, we apply ion-transfer voltammetry not only to confirm protamine extraction into ionophore-doped polymeric membranes but also to reveal protamine adsorption at the membrane/water interface. Protamine adsorption is thermodynamically more favorable than protamine extraction as shown by cyclic voltammetry at plasticized poly(vinyl chloride) membranes containing dinonylnaphthalenesulfonate as a protamine-selective ionophore. Reversible adsorption of protamine at low concentrations down to 0.038 µg/mL is demonstrated by stripping voltammetry. Adsorptive preconcentration of protamine at the membrane/water interface is quantitatively modeled by using the Frumkin adsorption isotherm. We apply this model to ensure that stripping voltammograms are based on desorption of all protamine molecules that are transferred across the interface during a preconcentration step. In comparison to adsorption, voltammetric extraction of protamine requires ∼0.2 V more negative potentials, where a potentiometric super-Nernstian response to protamine is also observed. This agreement confirms that the potentiometric protamine response is based on protamine extraction. The voltammetrically reversible protamine extraction results in an apparently irreversible potentiometric response to protamine because back-extraction of protamine from the membrane extremely slows down at the mixed potential based on cation-exchange extraction of protamine. Significantly, this study demonstrates the advantages of ion-transfer voltammetry over potentiometry to quantitatively and mechanistically assess protamine transfer at ionophore-based polymeric membranes as foundation for reversible, selective, and sensitive detection of protamine.


Subject(s)
Ionophores/chemistry , Membranes, Artificial , Polyvinyl Chloride/chemistry , Protamines/chemistry , Protamines/isolation & purification , Adsorption , Electrochemistry , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Potentiometry , Protein Conformation , Thermodynamics , Water/chemistry
4.
Anal Chem ; 86(22): 11230-7, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25313994

ABSTRACT

Here we report on ion-transfer voltammetry of perfluoroalkanesulfonates and perfluoroalkanecarboxylates at the interface between a plasticized polymer membrane and water to enable the ultrasensitive detection of these persistent environmental contaminants with adverse health effects. The ion-transfer cyclic voltammograms of the perfluoroalkyl oxoanions are obtained by using a ∼1 µm thick poly(vinyl chloride) membrane plasticized with 2-nitrophenyl octyl ether. The cyclic voltammograms are numerically analyzed to determine formal ion-transfer potentials as a measure of ion lipophilicity. The fragmental analysis of the formal potentials reveals that the 10(4) times higher lipophilicity of a perfluoroalkanesulfonate in comparison to the alkanesulfonate with the same chain length is due to the inductive effect of perfluorination on lowering the electron density of the adjacent sulfonate group, thereby weakening its hydration. The fragmental analysis also demonstrates that the lipophilicities of perfluoroalkyl and alkyl groups with the same length are nearly identical and vary with the length. Advantageously, the high lipophilicity of perfluorooctanesulfonate allows for its stripping voltammetric detection at 50 pM in the presence of 1 mM aqueous supporting electrolytes, a ∼10(7) times higher concentration. Significantly, this detection limit for perfluorooctanesulfonate is unprecedentedly low for electrochemical sensors and is lower than its minimum reporting level in drinking water set by the U.S. Environmental Protection Agency. In comparison, the voltammetric detection of perfluoroalkanecarboxylates is compromised not only by the lower lipophilicity of the carboxylate group but also by its oxidative decarboxylation at the underlying poly(3-octylthiophene)-modified gold electrode during voltammetric ion-to-electron transduction.

5.
Anal Chem ; 86(15): 7939-46, 2014 Aug 05.
Article in English | MEDLINE | ID: mdl-24992261

ABSTRACT

Ultrasensitive ion-selective electrode measurements based on stripping voltammetry are an emerging sensor technology with low- and subnanomolar detection limits. Here, we report on stripping voltammetry of down to 0.1 nM Ca(2+) by using a thin-polymer-coated electrode and demonstrate the advantageous effects of the divalent charge on sensitivity. A simple theory predicts that the maximum concentration of an analyte ion preconcentrated in the thin membrane depends exponentially on the charge and that the current response based on exhaustive ion stripping from the thin membrane is proportional to the square of the charge. The theoretical predictions are quantitatively confirmed by using a thin ionophore-doped polymer membrane spin-coated on a conducting-polymer-modified electrode. The potentiostatic transfer of hydrophilic Ca(2+) from an aqueous sample into the hydrophobic double-polymer membrane is facilitated by an ionophore with high Ca(2+) affinity and selectivity. The resultant concentration of the Ca(2+)-ionophore complex in the ~1 µm-thick membrane can be at least 5 × 10(6) times higher than the aqueous Ca(2+) concentration. The stripping voltammetric current response to the divalent ion is enhanced to achieve a subnanomolar detection limit under the condition where a low-nanomolar detection limit is expected for a monovalent ion. Significantly, charge-dependent sensitivity is attractive for the ultrasensitive detection of multivalent ions with environmental and biomedical importance such as heavy metal ions and polyionic drugs. Importantly, this stripping voltammetric approach enables the absolute determination of subnanomolar Ca(2+) contamination in ultrapure water containing 10 mM supporting electrolytes, i.e., an 8 orders of magnitude higher background concentration.

SELECTION OF CITATIONS
SEARCH DETAIL
...