Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3941, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729937

ABSTRACT

A relevant question concerning inter-areal communication in the cortex is whether these interactions are synergistic. Synergy refers to the complementary effect of multiple brain signals conveying more information than the sum of each isolated signal. Redundancy, on the other hand, refers to the common information shared between brain signals. Here, we dissociated cortical interactions encoding complementary information (synergy) from those sharing common information (redundancy) during prediction error (PE) processing. We analyzed auditory and frontal electrocorticography (ECoG) signals in five common awake marmosets performing two distinct auditory oddball tasks and investigated to what extent event-related potentials (ERP) and broadband (BB) dynamics encoded synergistic and redundant information about PE processing. The information conveyed by ERPs and BB signals was synergistic even at lower stages of the hierarchy in the auditory cortex and between auditory and frontal regions. Using a brain-constrained neural network, we simulated the synergy and redundancy observed in the experimental results and demonstrated that the emergence of synergy between auditory and frontal regions requires the presence of strong, long-distance, feedback, and feedforward connections. These results indicate that distributed representations of PE signals across the cortical hierarchy can be highly synergistic.


Subject(s)
Acoustic Stimulation , Auditory Cortex , Callithrix , Electrocorticography , Animals , Auditory Cortex/physiology , Callithrix/physiology , Male , Female , Evoked Potentials/physiology , Frontal Lobe/physiology , Evoked Potentials, Auditory/physiology , Auditory Perception/physiology , Brain Mapping/methods
2.
Sci Rep ; 13(1): 19572, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37949997

ABSTRACT

The neurobiological nature of semantic knowledge, i.e., the encoding and storage of conceptual information in the human brain, remains a poorly understood and hotly debated subject. Clinical data on semantic deficits and neuroimaging evidence from healthy individuals have suggested multiple cortical regions to be involved in the processing of meaning. These include semantic hubs (most notably, anterior temporal lobe, ATL) that take part in semantic processing in general as well as sensorimotor areas that process specific aspects/categories according to their modality. Biologically inspired neurocomputational models can help elucidate the exact roles of these regions in the functioning of the semantic system and, importantly, in its breakdown in neurological deficits. We used a neuroanatomically constrained computational model of frontotemporal cortices implicated in word acquisition and processing, and adapted it to simulate and explain the effects of semantic dementia (SD) on word processing abilities. SD is a devastating, yet insufficiently understood progressive neurodegenerative disease, characterised by semantic knowledge deterioration that is hypothesised to be specifically related to neural damage in the ATL. The behaviour of our brain-based model is in full accordance with clinical data-namely, word comprehension performance decreases as SD lesions in ATL progress, whereas word repetition abilities remain less affected. Furthermore, our model makes predictions about lesion- and category-specific effects of SD: our simulation results indicate that word processing should be more impaired for object- than for action-related words, and that degradation of white matter should produce more severe consequences than the same proportion of grey matter decay. In sum, the present results provide a neuromechanistic explanatory account of cortical-level language impairments observed during the onset and progress of semantic dementia.


Subject(s)
Frontotemporal Dementia , Neurodegenerative Diseases , Humans , Frontotemporal Dementia/pathology , Neurodegenerative Diseases/pathology , Temporal Lobe/diagnostic imaging , Temporal Lobe/pathology , Brain/diagnostic imaging , Semantics , Psychomotor Performance , Magnetic Resonance Imaging/methods
3.
Philos Trans R Soc Lond B Biol Sci ; 378(1870): 20210373, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36571136

ABSTRACT

A neurobiologically constrained model of semantic learning in the human brain was used to simulate the acquisition of concrete and abstract concepts, either with or without verbal labels. Concept acquisition and semantic learning were simulated using Hebbian learning mechanisms. We measured the network's category learning performance, defined as the extent to which it successfully (i) grouped partly overlapping perceptual instances into a single (abstract or concrete) conceptual representation, while (ii) still distinguishing representations for distinct concepts. Co-presence of linguistic labels with perceptual instances of a given concept generally improved the network's learning of categories, with a significantly larger beneficial effect for abstract than concrete concepts. These results offer a neurobiological explanation for causal effects of language structure on concept formation and on perceptuo-motor processing of instances of these concepts: supplying a verbal label during concept acquisition improves the cortical mechanisms by which experiences with objects and actions along with the learning of words lead to the formation of neuronal ensembles for specific concepts and meanings. Furthermore, the present results make a novel prediction, namely, that such 'Whorfian' effects should be modulated by the concreteness/abstractness of the semantic categories being acquired, with language labels supporting the learning of abstract concepts more than that of concrete ones. This article is part of the theme issue 'Concepts in interaction: social engagement and inner experiences'.


Subject(s)
Concept Formation , Language , Humans , Concept Formation/physiology , Brain/physiology , Learning , Semantics , Perception
4.
Front Hum Neurosci ; 15: 581847, 2021.
Article in English | MEDLINE | ID: mdl-33732120

ABSTRACT

Embodied theories of grounded semantics postulate that, when word meaning is first acquired, a link is established between symbol (word form) and corresponding semantic information present in modality-specific-including primary-sensorimotor cortices of the brain. Direct experimental evidence documenting the emergence of such a link (i.e., showing that presentation of a previously unknown, meaningless word sound induces, after learning, category-specific reactivation of relevant primary sensory or motor brain areas), however, is still missing. Here, we present new neuroimaging results that provide such evidence. We taught participants aspects of the referential meaning of previously unknown, senseless novel spoken words (such as "Shruba" or "Flipe") by associating them with either a familiar action or a familiar object. After training, we used functional magnetic resonance imaging to analyze the participants' brain responses to the new speech items. We found that hearing the newly learnt object-related word sounds selectively triggered activity in the primary visual cortex, as well as secondary and higher visual areas.These results for the first time directly document the formation of a link between the novel, previously meaningless spoken items and corresponding semantic information in primary sensory areas in a category-specific manner, providing experimental support for perceptual accounts of word-meaning acquisition in the brain.

5.
Sci Rep ; 9(1): 3579, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30837569

ABSTRACT

In blind people, the visual cortex takes on higher cognitive functions, including language. Why this functional reorganisation mechanistically emerges at the neuronal circuit level is still unclear. Here, we use a biologically constrained network model implementing features of anatomical structure, neurophysiological function and connectivity of fronto-temporal-occipital areas to simulate word-meaning acquisition in visually deprived and undeprived brains. We observed that, only under visual deprivation, distributed word-related neural circuits 'grew into' the deprived visual areas, which therefore adopted a linguistic-semantic role. Three factors are crucial for explaining this deprivation-related growth: changes in the network's activity balance brought about by the absence of uncorrelated sensory input, the connectivity structure of the network, and Hebbian correlation learning. In addition, the blind model revealed long-lasting spiking neural activity compared to the sighted model during word recognition, which is a neural correlate of enhanced verbal working memory. The present neurocomputational model offers a neurobiological account for neural changes following sensory deprivation, thus closing the gap between cellular-level mechanisms, system-level linguistic and semantic function.


Subject(s)
Blindness/physiopathology , Language , Models, Neurological , Visual Cortex/physiopathology , Humans , Learning
6.
Front Comput Neurosci ; 12: 88, 2018.
Article in English | MEDLINE | ID: mdl-30459584

ABSTRACT

One of the most controversial debates in cognitive neuroscience concerns the cortical locus of semantic knowledge and processing in the human brain. Experimental data revealed the existence of various cortical regions relevant for meaning processing, ranging from semantic hubs generally involved in semantic processing to modality-preferential sensorimotor areas involved in the processing of specific conceptual categories. Why and how the brain uses such complex organization for conceptualization can be investigated using biologically constrained neurocomputational models. Here, we improve pre-existing neurocomputational models of semantics by incorporating spiking neurons and a rich connectivity structure between the model 'areas' to mimic important features of the underlying neural substrate. Semantic learning and symbol grounding in action and perception were simulated by associative learning between co-activated neuron populations in frontal, temporal and occipital areas. As a result of Hebbian learning of the correlation structure of symbol, perception and action information, distributed cell assembly circuits emerged across various cortices of the network. These semantic circuits showed category-specific topographical distributions, reaching into motor and visual areas for action- and visually-related words, respectively. All types of semantic circuits included large numbers of neurons in multimodal connector hub areas, which is explained by cortical connectivity structure and the resultant convergence of phonological and semantic information on these zones. Importantly, these semantic hub areas exhibited some category-specificity, which was less pronounced than that observed in primary and secondary modality-preferential cortices. The present neurocomputational model integrates seemingly divergent experimental results about conceptualization and explains both semantic hubs and category-specific areas as an emergent process causally determined by two major factors: neuroanatomical connectivity structure and correlated neuronal activation during language learning.

7.
J Neurosci ; 37(11): 3045-3055, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28193685

ABSTRACT

The human brain sets itself apart from that of its primate relatives by specific neuroanatomical features, especially the strong linkage of left perisylvian language areas (frontal and temporal cortex) by way of the arcuate fasciculus (AF). AF connectivity has been shown to correlate with verbal working memory-a specifically human trait providing the foundation for language abilities-but a mechanistic explanation of any related causal link between anatomical structure and cognitive function is still missing. Here, we provide a possible explanation and link, by using neurocomputational simulations in neuroanatomically structured models of the perisylvian language cortex. We compare networks mimicking key features of cortical connectivity in monkeys and humans, specifically the presence of relatively stronger higher-order "jumping links" between nonadjacent perisylvian cortical areas in the latter, and demonstrate that the emergence of working memory for syllables and word forms is a functional consequence of this structural evolutionary change. We also show that a mere increase of learning time is not sufficient, but that this specific structural feature, which entails higher connectivity degree of relevant areas and shorter sensorimotor path length, is crucial. These results offer a better understanding of specifically human anatomical features underlying the language faculty and their evolutionary selection advantage.SIGNIFICANCE STATEMENT Why do humans have superior language abilities compared to primates? Recently, a uniquely human neuroanatomical feature has been demonstrated in the strength of the arcuate fasciculus (AF), a fiber pathway interlinking the left-hemispheric language areas. Although AF anatomy has been related to linguistic skills, an explanation of how this fiber bundle may support language abilities is still missing. We use neuroanatomically structured computational models to investigate the consequences of evolutionary changes in language area connectivity and demonstrate that the human-specific higher connectivity degree and comparatively shorter sensorimotor path length implicated by the AF entail emergence of verbal working memory, a prerequisite for language learning. These results offer a better understanding of specifically human anatomical features for language and their evolutionary selection advantage.


Subject(s)
Biological Evolution , Cerebral Cortex/physiology , Language , Models, Genetic , Models, Neurological , Neuronal Plasticity/genetics , Animals , Cerebral Aqueduct/physiology , Computer Simulation , Connectome/methods , Haplorhini , Humans , Macaca , Pan troglodytes , Species Specificity
8.
Neuropsychologia ; 98: 111-129, 2017 04.
Article in English | MEDLINE | ID: mdl-27394150

ABSTRACT

Neuroimaging and patient studies show that different areas of cortex respectively specialize for general and selective, or category-specific, semantic processing. Why are there both semantic hubs and category-specificity, and how come that they emerge in different cortical regions? Can the activation time-course of these areas be predicted and explained by brain-like network models? In this present work, we extend a neurocomputational model of human cortical function to simulate the time-course of cortical processes of understanding meaningful concrete words. The model implements frontal and temporal cortical areas for language, perception, and action along with their connectivity. It uses Hebbian learning to semantically ground words in aspects of their referential object- and action-related meaning. Compared with earlier proposals, the present model incorporates additional neuroanatomical links supported by connectivity studies and downscaled synaptic weights in order to control for functional between-area differences purely due to the number of in- or output links of an area. We show that learning of semantic relationships between words and the objects and actions these symbols are used to speak about, leads to the formation of distributed circuits, which all include neuronal material in connector hub areas bridging between sensory and motor cortical systems. Therefore, these connector hub areas acquire a role as semantic hubs. By differentially reaching into motor or visual areas, the cortical distributions of the emergent 'semantic circuits' reflect aspects of the represented symbols' meaning, thus explaining category-specificity. The improved connectivity structure of our model entails a degree of category-specificity even in the 'semantic hubs' of the model. The relative time-course of activation of these areas is typically fast and near-simultaneous, with semantic hubs central to the network structure activating before modality-preferential areas carrying semantic information.


Subject(s)
Brain Mapping , Cerebral Cortex/anatomy & histology , Cerebral Cortex/physiology , Learning/physiology , Models, Neurological , Neural Pathways/physiology , Semantics , Analysis of Variance , Computer Simulation , Female , Humans , Male
9.
Front Comput Neurosci ; 10: 145, 2016.
Article in English | MEDLINE | ID: mdl-28149276

ABSTRACT

Experimental evidence indicates that neurophysiological responses to well-known meaningful sensory items and symbols (such as familiar objects, faces, or words) differ from those to matched but novel and senseless materials (unknown objects, scrambled faces, and pseudowords). Spectral responses in the high beta- and gamma-band have been observed to be generally stronger to familiar stimuli than to unfamiliar ones. These differences have been hypothesized to be caused by the activation of distributed neuronal circuits or cell assemblies, which act as long-term memory traces for learned familiar items only. Here, we simulated word learning using a biologically constrained neurocomputational model of the left-hemispheric cortical areas known to be relevant for language and conceptual processing. The 12-area spiking neural-network architecture implemented replicates physiological and connectivity features of primary, secondary, and higher-association cortices in the frontal, temporal, and occipital lobes of the human brain. We simulated elementary aspects of word learning in it, focussing specifically on semantic grounding in action and perception. As a result of spike-driven Hebbian synaptic plasticity mechanisms, distributed, stimulus-specific cell-assembly (CA) circuits spontaneously emerged in the network. After training, presentation of one of the learned "word" forms to the model correlate of primary auditory cortex induced periodic bursts of activity within the corresponding CA, leading to oscillatory phenomena in the entire network and spontaneous across-area neural synchronization. Crucially, Morlet wavelet analysis of the network's responses recorded during presentation of learned meaningful "word" and novel, senseless "pseudoword" patterns revealed stronger induced spectral power in the gamma-band for the former than the latter, closely mirroring differences found in neurophysiological data. Furthermore, coherence analysis of the simulated responses uncovered dissociated category specific patterns of synchronous oscillations in distant cortical areas, including indirectly connected primary sensorimotor areas. Bridging the gap between cellular-level mechanisms, neuronal-population behavior, and cognitive function, the present model constitutes the first spiking, neurobiologically, and anatomically realistic model able to explain high-frequency oscillatory phenomena indexing language processing on the basis of dynamics and competitive interactions of distributed cell-assembly circuits which emerge in the brain as a result of Hebbian learning and sensorimotor experience.

10.
Eur J Neurosci ; 43(6): 721-37, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26660067

ABSTRACT

Current neurobiological accounts of language and cognition offer diverging views on the questions of 'where' and 'how' semantic information is stored and processed in the human brain. Neuroimaging data showing consistent activation of different multi-modal areas during word and sentence comprehension suggest that all meanings are processed indistinctively, by a set of general semantic centres or 'hubs'. However, words belonging to specific semantic categories selectively activate modality-preferential areas; for example, action-related words spark activity in dorsal motor cortex, whereas object-related ones activate ventral visual areas. The evidence for category-specific and category-general semantic areas begs for a unifying explanation, able to integrate the emergence of both. Here, a neurobiological model offering such an explanation is described. Using a neural architecture replicating anatomical and neurophysiological features of frontal, occipital and temporal cortices, basic aspects of word learning and semantic grounding in action and perception were simulated. As the network underwent training, distributed lexico-semantic circuits spontaneously emerged. These circuits exhibited different cortical distributions that reached into dorsal-motor or ventral-visual areas, reflecting the correlated category-specific sensorimotor patterns that co-occurred during action- or object-related semantic grounding, respectively. Crucially, substantial numbers of neurons of both types of distributed circuits emerged in areas interfacing between modality-preferential regions, i.e. in multimodal connection hubs, which therefore became loci of general semantic binding. By relating neuroanatomical structure and cellular-level learning mechanisms with system-level cognitive function, this model offers a neurobiological account of category-general and category-specific semantic areas based on the different cortical distributions of the underlying semantic circuits.


Subject(s)
Brain/physiology , Models, Neurological , Semantics , Speech Perception , Humans
11.
Biol Cybern ; 108(5): 573-93, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24939580

ABSTRACT

Cognitive theory has decomposed human mental abilities into cognitive (sub) systems, and cognitive neuroscience succeeded in disclosing a host of relationships between cognitive systems and specific structures of the human brain. However, an explanation of why specific functions are located in specific brain loci had still been missing, along with a neurobiological model that makes concrete the neuronal circuits that carry thoughts and meaning. Brain theory, in particular the Hebb-inspired neurocybernetic proposals by Braitenberg, now offers an avenue toward explaining brain-mind relationships and to spell out cognition in terms of neuron circuits in a neuromechanistic sense. Central to this endeavor is the theoretical construct of an elementary functional neuronal unit above the level of individual neurons and below that of whole brain areas and systems: the distributed neuronal assembly (DNA) or thought circuit (TC). It is shown that DNA/TC theory of cognition offers an integrated explanatory perspective on brain mechanisms of perception, action, language, attention, memory, decision and conceptual thought. We argue that DNAs carry all of these functions and that their inner structure (e.g., core and halo subcomponents), and their functional activation dynamics (e.g., ignition and reverberation processes) answer crucial localist questions, such as why memory and decisions draw on prefrontal areas although memory formation is normally driven by information in the senses and in the motor system. We suggest that the ability of building DNAs/TCs spread out over different cortical areas is the key mechanism for a range of specifically human sensorimotor, linguistic and conceptual capacities and that the cell assembly mechanism of overlap reduction is crucial for differentiating a vocabulary of actions, symbols and concepts.


Subject(s)
Brain , Cognition/physiology , Models, Neurological , Neurobiology , Neurons/physiology , Thinking/physiology , Brain/cytology , Brain/physiology , Humans
12.
Cortex ; 57: 1-21, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24769063

ABSTRACT

Memory cells, the ultimate neurobiological substrates of working memory, remain active for several seconds and are most commonly found in prefrontal cortex and higher multisensory areas. However, if correlated activity in "embodied" sensorimotor systems underlies the formation of memory traces, why should memory cells emerge in areas distant from their antecedent activations in sensorimotor areas, thus leading to "disembodiment" (movement away from sensorimotor systems) of memory mechanisms? We modelled the formation of memory circuits in six-area neurocomputational architectures, implementing motor and sensory primary, secondary and higher association areas in frontotemporal cortices along with known between-area neuroanatomical connections. Sensorimotor learning driven by Hebbian neuroplasticity led to formation of cell assemblies distributed across the different areas of the network. These action-perception circuits (APCs) ignited fully when stimulated, thus providing a neural basis for long-term memory (LTM) of sensorimotor information linked by learning. Subsequent to ignition, activity vanished rapidly from APC neurons in sensorimotor areas but persisted in those in multimodal prefrontal and temporal areas. Such persistent activity provides a mechanism for working memory for actions, perceptions and symbols, including short-term phonological and semantic storage. Cell assembly ignition and "disembodied" working memory retreat of activity to multimodal areas are documented in the neurocomputational models' activity dynamics, at the level of single cells, circuits, and cortical areas. Memory disembodiment is explained neuromechanistically by APC formation and structural neuroanatomical features of the model networks, especially the central role of multimodal prefrontal and temporal cortices in bridging between sensory and motor areas. These simulations answer the "where" question of cortical working memory in terms of distributed APCs and their inner structure, which is, in part, determined by neuroanatomical structure. As the neurocomputational model provides a mechanistic explanation of how memory-related "disembodied" neuronal activity emerges in "embodied" APCs, it may be key to solving aspects of the embodiment debate and eventually to a better understanding of cognitive brain functions.


Subject(s)
Cognition/physiology , Learning/physiology , Models, Neurological , Prefrontal Cortex/physiology , Temporal Lobe/physiology , Language , Memory/physiology , Neuronal Plasticity/physiology , Neurons/physiology , Perception/physiology
13.
Brain Cogn ; 86: 55-63, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24565813

ABSTRACT

Sensory dysfunctions may underlie key characteristics in children with Autism Spectrum Disorders (ASD). The current study aimed to investigate auditory change detection in children with ASD in order to determine event-related potentials to meaningless and meaningful speech stimuli. 11 high functioning boys with a diagnosis of autism spectrum disorders (mean age=13.0; SD=1.08) and 11 typically developing boys (mean age=13.7; SD=1.5) participated in a mismatch negativity (MMN) paradigm. Results revealed that compared to TD controls, the children with ASD showed significantly reduced MMN responses to both words and pseudowords in the frontal regions of the brain and also a significant reduction in their activation for words in the Central Parietal regions. In order to test the relationship between sensory processing and auditory processing, children completed the Adult and Adolescent Sensory Profile. As predicted, the children with ASD showed more extreme sensory behaviours and were significantly higher than their typically developing controls across three of the sensory quadrants (sensory sensitivity, low registration and sensory avoidance). Importantly, only auditory sensory sensitivity was able to account for the differences displayed for words in the frontal and central parietal regions when controlling for the effect of group, revealing an inverse relationship of the higher sensory sensitivity scores the less activation in response for words. We discuss how the expression of sensory behaviours in ASD may result in deficient neurophysiological mechanisms underlying automatic language processing.


Subject(s)
Brain/physiopathology , Child Development Disorders, Pervasive/physiopathology , Evoked Potentials, Auditory , Speech Perception/physiology , Acoustic Stimulation , Adolescent , Child , Electroencephalography , Humans , Male
14.
Brain Lang ; 127(1): 75-85, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23489583

ABSTRACT

The neural mechanisms underlying the spontaneous, stimulus-independent emergence of intentions and decisions to act are poorly understood. Using a neurobiologically realistic model of frontal and temporal areas of the brain, we simulated the learning of perception-action circuits for speech and hand-related actions and subsequently observed their spontaneous behaviour. Noise-driven accumulation of reverberant activity in these circuits leads to their spontaneous ignition and partial-to-full activation, which we interpret, respectively, as model correlates of action intention emergence and action decision-and-execution. Importantly, activity emerged first in higher-association prefrontal and temporal cortices, subsequently spreading to secondary and finally primary sensorimotor model-areas, hence reproducing the dynamics of cortical correlates of voluntary action revealed by readiness-potential and verb-generation experiments. This model for the first time explains the cortical origins and topography of endogenous action decisions, and the natural emergence of functional specialisation in the cortex, as mechanistic consequences of neurobiological principles, anatomical structure and sensorimotor experience.


Subject(s)
Computer Simulation , Decision Making/physiology , Frontal Lobe/physiology , Models, Neurological , Speech/physiology , Temporal Lobe/physiology , Brain Mapping , Humans , Language
15.
Neuroimage ; 54(1): 170-81, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-20728545

ABSTRACT

Most animals detect sudden changes in trains of repeated stimuli but only some can learn a wide range of sensory patterns and recognise them later, a skill crucial for the evolutionary success of higher mammals. Here we use a neural model mimicking the cortical anatomy of sensory and motor areas and their connections to explain brain activity indexing auditory change and memory access. Our simulations indicate that while neuronal adaptation and local inhibition of cortical activity can explain aspects of change detection as observed when a repeated unfamiliar sound changes in frequency, the brain dynamics elicited by auditory stimulation with well-known patterns (such as meaningful words) cannot be accounted for on the basis of adaptation and inhibition alone. Specifically, we show that the stronger brain responses observed to familiar stimuli in passive oddball tasks are best explained in terms of activation of memory circuits that emerged in the cortex during the learning of these stimuli. Such memory circuits, and the activation enhancement they entail, are absent for unfamiliar stimuli. The model illustrates how basic neurobiological mechanisms, including neuronal adaptation, lateral inhibition, and Hebbian learning, underlie neuronal assembly formation and dynamics, and differentially contribute to the brain's major change detection response, the mismatch negativity.


Subject(s)
Auditory Perception/physiology , Evoked Potentials, Auditory/physiology , Language , Memory/physiology , Neurons/physiology , Sound , Temporal Lobe/physiology , Acoustic Stimulation , Animals , Brain Mapping/methods , Humans , Learning/physiology , Models, Neurological
16.
Front Hum Neurosci ; 3: 10, 2009.
Article in English | MEDLINE | ID: mdl-19680433

ABSTRACT

Recent results obtained with a neural-network model of the language cortex suggest that the memory circuits developing for words are both distributed and functionally discrete. This model makes testable predictions about brain responses to words and pseudowords under variable availability of attentional resources. In particular, due to their strong internal connections, the action-perception circuits for words that the network spontaneously developed exhibit functionally discrete activation dynamics, which are only marginally affected by attentional variations. At the same time, network responses to unfamiliar items - pseudowords - that have not been previously learned (and, therefore, lack corresponding memory representations) exhibit (and predict) strong attention dependence, explained by the different amounts of attentional resources available and, therefore, different degrees of competition between multiple memory circuits partially activated by items lacking lexical traces. We tested these predictions in a novel magnetoencephalography experiment and presented subjects with familiar words and matched unfamiliar pseudowords during attention demanding tasks and under distraction. The magnetic mismatch negativity (MMN) response to words showed relative immunity to attention variations, whereas the MMN to pseudowords exhibited profound variability: when subjects attended the stimuli, the brain response to pseudowords was larger than that to words (as typically observed in the N400); when attention was withdrawn, the opposite pattern emerged, with the response to pseudowords reduced below the response to words. Main cortical sources of these activations were localized to superior-temporal cortex. These results confirm the model's predictions and provide evidence in support of the hypothesis that words are represented in the brain as action-perception circuits that are both discrete and distributed.

17.
Cognit Comput ; 1(2): 160-176, 2009 Jun.
Article in English | MEDLINE | ID: mdl-20396612

ABSTRACT

Current cognitive theories postulate either localist representations of knowledge or fully overlapping, distributed ones. We use a connectionist model that closely replicates known anatomical properties of the cerebral cortex and neurophysiological principles to show that Hebbian learning in a multi-layer neural network leads to memory traces (cell assemblies) that are both distributed and anatomically distinct. Taking the example of word learning based on action-perception correlation, we document mechanisms underlying the emergence of these assemblies, especially (i) the recruitment of neurons and consolidation of connections defining the kernel of the assembly along with (ii) the pruning of the cell assembly's halo (consisting of very weakly connected cells). We found that, whereas a learning rule mapping covariance led to significant overlap and merging of assemblies, a neurobiologically grounded synaptic plasticity rule with fixed LTP/LTD thresholds produced minimal overlap and prevented merging, exhibiting competitive learning behaviour. Our results are discussed in light of current theories of language and memory. As simulations with neurobiologically realistic neural networks demonstrate here spontaneous emergence of lexical representations that are both cortically dispersed and anatomically distinct, both localist and distributed cognitive accounts receive partial support.

18.
Eur J Neurosci ; 27(2): 492-513, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18215243

ABSTRACT

Meaningful familiar stimuli and senseless unknown materials lead to different patterns of brain activation. A late major neurophysiological response indexing 'sense' is the negative component of event-related potential peaking at around 400 ms (N400), an event-related potential that emerges in attention-demanding tasks and is larger for senseless materials (e.g. meaningless pseudowords) than for matched meaningful stimuli (words). However, the mismatch negativity (latency 100-250 ms), an early automatic brain response elicited under distraction, is larger to words than to pseudowords, thus exhibiting the opposite pattern to that seen for the N400. So far, no theoretical account has been able to reconcile and explain these findings by means of a single, mechanistic neural model. We implemented a neuroanatomically grounded neural network model of the left perisylvian language cortex and simulated: (i) brain processes of early language acquisition and (ii) cortical responses to familiar word and senseless pseudoword stimuli. We found that variation of the area-specific inhibition (the model correlate of attention) modulated the simulated brain response to words and pseudowords, producing either an N400- or a mismatch negativity-like response depending on the amount of inhibition (i.e. available attentional resources). Our model: (i) provides a unifying explanatory account, at cortical level, of experimental observations that, so far, had not been given a coherent interpretation within a single framework; (ii) demonstrates the viability of purely Hebbian, associative learning in a multilayered neural network architecture; and (iii) makes clear predictions on the effects of attention on latency and magnitude of event-related potentials to lexical items. Such predictions have been confirmed by recent experimental evidence.


Subject(s)
Attention/physiology , Brain/physiology , Language , Learning/physiology , Neural Networks, Computer , Evoked Potentials, Auditory/physiology , Humans
19.
J Physiol Paris ; 100(1-3): 16-30, 2006.
Article in English | MEDLINE | ID: mdl-17081735

ABSTRACT

This paper demonstrates how associative neural networks as standard models for Hebbian cell assemblies can be extended to implement language processes in large-scale brain simulations. To this end the classical auto- and hetero-associative paradigms of attractor nets and synfire chains (SFCs) are combined and complemented by conditioned associations as a third principle which allows for the implementation of complex graph-like transition structures between assemblies. We show example simulations of a multiple area network for object-naming, which categorises objects in a visual hierarchy and generates different specific syntactic motor sequences ("words") in response. The formation of cell assemblies due to ongoing plasticity in a multiple area network for word learning is studied afterwards. Simulations show how assemblies can form by means of percolating activity across auditory and motor-related language areas, a process supported by rhythmic, synchronized propagating waves through the network. Simulations further reproduce differences in own EEG&MEG experiments between responses to word- versus non-word stimuli in human subjects.


Subject(s)
Association Learning/physiology , Language , Models, Neurological , Neurons/physiology , Animals , Computer Simulation , Humans , Neural Networks, Computer , Photic Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL
...