Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Front Psychiatry ; 15: 1347178, 2024.
Article in English | MEDLINE | ID: mdl-38414497

ABSTRACT

Depressive disorder is a severe mental condition. In addition to genetic factors, immunological-inflammatory factors, oxidative stress, and disturbances in neurotransmitter metabolism, kynurenine and serotonin pathways may play a role. The exact mechanisms, especially in depressed children and adolescents, are not fully understood. Our primary hypothesis was whether the metabolites of tryptophan degradation in children and adolescents with depressive disorder might be influenced by omega-3 FAs compared to omega-6 FAs during a 12-week supplementation. A secondary hypothesis was to investigate whether tryptophan metabolites in children and adolescents are associated with markers of inflammatory response, oxidative stress, cortisol, and the serum omega-6/omega-3 FA ratio. Metabolites of tryptophan degradation and pteridines, neopterin, and biopterin in urine were analyzed with an HPLC system. Surprisingly, omega-3 FAs stimulated both kynurenine (kynurenine/tryptophan ratio) and serotonin (5-hydroxytryptophan) pathways, whereas omega-6 FAs only increased the kynurenine/tryptophan ratio. Neopterin and biopterin were not different from the healthy controls. Biopterin increased after omega-3 FA supplementation. Serotonin was positively correlated with lipoperoxidation and a marker of oxidative protein damage. Of the monitored tryptophan metabolites, only 5-hydroxyindolacetic acid was positively correlated with the severity of depression, total cholesterol, and negatively with brain-derived neurotrophic factor and glutathione peroxidase. In conclusion, in children and adolescents, both supplemented FAs stimulated the kynurenine pathway (kynurenine/tryptophan ratio) and kynurenine formation. However, the serotonin pathway (5-hydroxytryptophan) was stimulated only by omega-3 FA. Tryptophan metabolism is associated with oxidative stress, inflammation, total cholesterol, and cortisol. We are the first to point out the association between the kynurenine pathway (KYN/TRP ratio) and the omega-6/omega-3 FA ratio. The metabolite 5-HIAA could play a role in the pathophysiology of depressive disorder in children and adolescents. Clinical Trial Registration: https://www.isrctn.com/ISRCTN81655012, identifier ISRCTN81655012.

2.
Antioxidants (Basel) ; 11(8)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36009265

ABSTRACT

Late childhood and adolescence are crucial periods of brain development with high vulnerability to environmental insults. The aim of this study was to test the hypotheses that in adolescents with depression (a) 12 weeks-supplementation with omega-3 fatty acids results in the attenuation of salivary stress hormone concentrations; (b) the mentioned supplementation improves potentially disrupted daily rhythm of stress hormones; (c) stress hormone concentrations correlate with values of selected markers of oxidative stress. The sample consisted of 60 patients suffering from depression aged 11-18 years. Hormone concentrations in saliva were measured in the morning and midday before (baseline) and after (6, 12 weeks) food supplementation with omega-3 or omega-6 (as comparator) fatty acids. Morning cortisol decreased in response to omega-3 but not omega-6 fatty acids at 12 weeks compared to baseline. No changes were observed in aldosterone concentrations. The obtained results show that adolescent children with depression preserved the daily rhythm of both stress hormones. Baseline morning cortisol concentrations correlated positively with depression severity and lipoperoxides, and negatively with docosahexaenoic acid. Aldosterone concentrations correlated positively with 8-isoprostane. Thus, both hormones showed positive correlation with the selected markers of oxidative stress suggesting that enhanced stress hormone secretion may be associated with increased oxidative tissue damage in adolescent children with depression. This study was registered with the ISRCTN registry (DEPOXIN study, ISRCTN81655012).

3.
Antioxidants (Basel) ; 10(8)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34439504

ABSTRACT

Oxidative stress (OS) is thought to play a role in mental disorders. However, it is not clear whether the OS is the cause or consequence of the disorder. We investigated markers of oxidative stress (8-isoprostane (8-IsoP-U), lipoperoxides (LP), advanced oxidation protein products (AOPP) and nitrotyrosine (NT)) and antioxidant protection (Trolox equivalent antioxidant capacity (TEAC), activities of superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) in 60 paediatric and adolescent patients with depressive disorder (DD) compared to healthy controls. The patients were divided into two groups (1:1). One group received an emulsion of omega-3 fatty acid (FA), and the other group an emulsion of sunflower oil with omega-6 FA for 12 weeks. The levels of 8-IsoP-U, AOPP and NT were increased, and GPx activity was decreased in patients compared to the controls. We found a significant positive correlation of the Children's Depression Inventory score with NT and a negative correlation with TEAC, SOD and GPx. NT correlated positively with the baseline omega-6/omega-3 FA ratio and a negatively with SOD. A supplementation with omega-3 FA, but not with omega-6 FA, decreased 8-IsoP-U, AOPP, NT levels and increased TEAC and SOD activity. Our results suggest that NT may play a role in the pathophysiology of DD, while elevated isoprostane is likely caused by the high omega-6/omega-3 FA ratio. Omega-3 FA supplementation reduces oxidative stress in patients with DD. This study was registered with the ISRCTN registry (ISRCTN81655012).

4.
Nutrients ; 13(4)2021 Mar 27.
Article in English | MEDLINE | ID: mdl-33801688

ABSTRACT

In the DEPOXIN project, we have found that a high ratio of omega-6/omega-3 fatty acids (FA) is associated with worsening of depressive symptoms in children and adolescents with depressive disorder (DD) and that the 12-week omega-3 FA supplementation modulates DD symptoms. Here we present our results of the secondary outcomes: the levels of thromboxane (TXB), brain-derived neurotrophic factor (BDNF), homocysteine (HCy) and vitamin D. Fifty-eight patients were randomized into two arms. One group received a fish oil emulsion enriched with omega-3 FA, and the other received a sunflower oil emulsion containing omega-6 FA, for 12 weeks. Depressive symptoms were evaluated, using the Child's Depressive Inventory (CDI). The patients with DD had elevated TXB levels and decreased vitamin D levels, as compared to healthy controls. Both CDI and omega-6/omega-3 ratio correlated positively with TXB and negatively with BDNF at baseline. Compared to the omega-6 FA group, the supplementation with omega-3 FA for 12 weeks significantly reduced plasma TXB (p = 0.024) and increased BDNF (p = 0.011) levels. No changes in HCy and vitamin D were observed. Our results demonstrate the possible role of TXB and BDNF in the pathophysiology of DD and the benefits of omega-3 FA supplementation. The study was registered with the ISRCTN registry (ISRCTN81655012).


Subject(s)
Brain-Derived Neurotrophic Factor/blood , Depressive Disorder/drug therapy , Fatty Acids, Omega-3/pharmacology , Thromboxanes/blood , Vitamin D/blood , Adolescent , Brain-Derived Neurotrophic Factor/metabolism , Case-Control Studies , Child , Dietary Supplements , Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Omega-6/blood , Female , Fish Oils , Homocysteine/blood , Homocysteine/metabolism , Humans , Male , Thromboxanes/metabolism , Vitamin D/metabolism
5.
Biomolecules ; 10(10)2020 10 08.
Article in English | MEDLINE | ID: mdl-33050072

ABSTRACT

Depressive disorder (DD) is a psychiatric disorder whose molecular basis is not fully understood. It is assumed that reduced consumption of fish and omega-3 fatty acids (FA) is associated with DD. Other lipids such as total cholesterol (TCH), LDL-, and HDL-cholesterols (LDL-CH, HDL-CH) also play a role in depression. The primary endpoint of the study was the effect of omega-3 FA on the severity of depression in children and adolescents. This study aimed to investigate the secondary endpoint, relationship between depressive disorder symptoms and lipid profile, LDL- and HDL-cholesterol subfractions, Paraoxonase 1 (PON1) activities, and erythrocyte membrane fluidity in 58 depressed children and adolescents (calculated by the statistical program on the effect size), as well as the effect of omega-3 FA on the monitored parameters. Depressive symptoms were assessed by the Children's Depression Inventory (CDI), lipid profile by standard biochemical procedures, and LDL- and HDL-subfractions by the Lipoprint system. Basic biochemical parameters including lipid profile were compared with levels in 20 healthy children and were in the physiological range. Improvement of symptoms in the group supplemented with a fish oil emulsion rich in omega-3 FA in contrast to omega-6 FA (emulsion of sunflower oil) has been observed. We are the first to report that omega-3 FAs, but not omega-6 FA, increase large HDL subfractions (anti-atherogenic) after 12 weeks of supplementation and decrease small HDL subfractions (proatherogenic) in depressed children. We found a negative correlation between CDI score and HDL-CH and the large HDL subfraction, but not LDL-CH subfractions. CDI score was not associated with erythrocyte membrane fluidity. Our results suggest that HDL-CH and its subfractions, but not LDL-CH may play a role in the pathophysiology of depressive disorder. The study was registered under ISRCTN81655012.


Subject(s)
Depressive Disorder/diet therapy , Fatty Acids, Omega-3/therapeutic use , Lipids/blood , Membrane Fluidity/physiology , Adolescent , Antidepressive Agents/therapeutic use , Blood Chemical Analysis , Chemical Fractionation , Child , Depressive Disorder/blood , Depressive Disorder/drug therapy , Depressive Disorder/pathology , Dietary Supplements , Double-Blind Method , Erythrocyte Membrane/chemistry , Erythrocyte Membrane/physiology , Fatty Acids, Omega-3/pharmacology , Female , Humans , Lipids/analysis , Lipoproteins/analysis , Lipoproteins/blood , Male , Severity of Illness Index , Slovakia
6.
Psychiatry Res ; 287: 112911, 2020 05.
Article in English | MEDLINE | ID: mdl-32179212

ABSTRACT

Omega-3 fatty acids (FA) are a promising adjuvant therapy for depressive disorder (DD) in adults. The objective of this single-centre, randomized, double-blind and controlled study was to compare the efficacy of an omega-3 FA fish oil emulsion with a control oil emulsion alongside the standard treatment for depression in children and adolescents suffering from DD or mixed anxiety depressive disorder (MADD) and to analyse serum fatty acid levels and omega-6/omega-3 FA ratio before and after the intervention. 60 children were randomised 1:1 to the intervention (Om3) or active comparator (Om6) groups. Children's Depression Inventory (CDI) ratings were performed at the baseline, every 2 weeks for a 12-week intervention period. Significant reductions in CDI scores were observed after 6 and 12 weeks of intervention in the Om3 group and in the DD subgroup compared to the Om6 and MADD subgroup. Ratio of omega-6/omega-3 decreased in Om3 but not in Om6 from 24.2/1 to 7.6/1 after 6 weeks, EPA, omega-6/omega-3 ratio, but not DHA, correlated with severity symptoms at the baseline. An omega-3 fatty acid rich fish oil emulsion may be an effective adjuvant supplement during the treatment of depressive disorders in children. Trial registration: ISRCTN 81655012.


Subject(s)
Depressive Disorder/blood , Depressive Disorder/drug therapy , Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Omega-3/blood , Fatty Acids, Omega-6/administration & dosage , Fatty Acids, Omega-6/blood , Adolescent , Biomarkers/blood , Child , Depressive Disorder/diagnosis , Dietary Supplements , Double-Blind Method , Drug Therapy, Combination , Female , Humans , Male , Treatment Outcome
7.
Sci Rep ; 8(1): 7668, 2018 05 16.
Article in English | MEDLINE | ID: mdl-29769554

ABSTRACT

Most randomised controlled trials (RCTs) are relatively short term and, due to costs and available resources, have limited opportunity to be re-visited or extended. There is no guarantee that effects of treatments remain unchanged beyond the study. Here, we illustrate the feasibility, benefits and cost-effectiveness of enriching standard trial design with electronic follow up. We completed a 5-year electronic follow up of a RCT investigating the impact of probiotics on asthma and eczema in children born 2005-2007, with traditional fieldwork follow up to two years. Participants and trial outcomes were identified and analysed after five years using secure, routine, anonymised, person-based electronic health service databanks. At two years, we identified 93% of participants and compared fieldwork with electronic health records, highlighting areas of agreement and disagreement. Retention of children from lower socio-economic groups was improved, reducing volunteer bias. At 5 years we identified a reduced 82% of participants. These data allowed the trial's first robust analysis of asthma endpoints. We found no indication that probiotic supplementation to pregnant mothers and infants protected against asthma or eczema at 5 years. Continued longer-term follow up is technically straightforward.


Subject(s)
Asthma/prevention & control , Eczema/prevention & control , Electronic Health Records/statistics & numerical data , Mothers/statistics & numerical data , Probiotics/therapeutic use , Child, Preschool , Double-Blind Method , Female , Humans , Infant, Newborn , Pregnancy , Quality of Life
8.
Nutr Res ; 46: 49-58, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28893413

ABSTRACT

Diabetes-related complications, including cardiovascular disease, retinopathy, nephropathy, and neuropathy, are a significant cause of increased morbidity and mortality among people with diabetes. Previous studies have confirmed that hyperglycemia has pro-oxidative and proinflammatory properties which cause diabetic complications. We hypothesized that supplementation of fish oil emulsion (FOE), rich in omega-3 polyunsaturated fatty acids, to diabetic patients might reduce hyperglycemia-induced pathological changes due to specific properties of FOE. Omega-3 polyunsaturated fatty acids have a wide range of biological effects. In this project, we have examined the potential protective effect of the FOE on hyperglycemia-induced oxidative stress and cytokine generation in monocytes/macrophages U937 system in vitro. The monocytes/macrophages U937 were cultivated under normal or hyperglycemic (35 mmol/L glucose) conditions with/without FOE for 72 hours. We have focused on specific markers of oxidative stress (antioxidant capacity; superoxide dismutase activity; oxidative damage to DNA, proteins, and lipids) and inflammation (tumor necrosis factor, interleukin-6, interleukin-8, monocytic chemotactic protein-1). Hyperglycemia caused reduction of antioxidant capacity, induction of DNA damage, and proinflammatory cytokine secretion. FOE significantly increased antioxidant capacity of cells as well as superoxide dismutase activity and significantly reduced tumor necrosis factor, interleukin-6, interleukin-8, and monocytic chemotactic protein-1 release. No effect was observed on oxidative damage to DNA, proteins, and lipids. Our results indicate that FOE can reduce hyperglycemia-induced pathological mechanisms by its antioxidant and anti-inflammatory properties.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/metabolism , Antioxidants/metabolism , Dietary Supplements , Fish Oils/metabolism , Macrophages/metabolism , Monocytes/metabolism , Oxidative Stress , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antioxidants/therapeutic use , Biomarkers/metabolism , Cell Differentiation , Cell Line , Cytokines/metabolism , DNA Damage , Diabetes Mellitus/diet therapy , Diabetes Mellitus/immunology , Diabetes Mellitus/metabolism , Diabetes Mellitus/pathology , Emulsions , Fish Oils/therapeutic use , Humans , Isoprostanes/metabolism , Kinetics , Macrophages/immunology , Macrophages/pathology , Monocytes/immunology , Monocytes/pathology , Protein Carbonylation , Reproducibility of Results , Superoxide Dismutase/chemistry , Superoxide Dismutase/metabolism
9.
Article in English | MEDLINE | ID: mdl-28690672

ABSTRACT

BACKGROUND: The prevalence of mood disorders in children is a growing global concern. Omega-3 fatty acids (FA) are emerging as a promising adjuvant therapy for depressive disorder (DD) in paediatric patients. The primary objective of this pilot, single-centre, randomized, double-blind controlled study was to compare the efficacy of an Omega-3 FA fish oil emulsion with a control oil emulsion alongside standard treatment for depressive symptoms in children and adolescents suffering from depressive disorder (DD) and mixed anxiety depressive disorder (MADD). METHODS: 38 children (12 patients were treated and diagnosed for at least 1 month before enrolment, 26 patients were first-time diagnosed as DD) aged 11-17 years were randomised 1:1 to the intervention (Omega-3 FA, 19 patients) or active comparator (Omega-6 FA, 19 patients) groups. Children's depression inventory (CDI) ratings were performed at baseline, every 2 weeks for a 12-week intervention period and at 4-week post-intervention. 35 patients (17 in Omega-3 and 18 in Omega-6 groups) who completed the whole intervention period were evaluated. Patients from Omega-3 group were stratified according to diagnosis into two subgroups (DD-10/17 and mixed anxiety depressive disorder (MADD)-7/17 patients) and in the Omega-6 group into DD-10/18 and MADD-8/18 patients. Groups were evaluated separately. Differences between-groups were tested with the Student´s t test or non-parametric Mann-Whitney U test. Two-way ANOVA with repeated measures and Friedman test were used to analyse the Treatment effect for response in CDI score. p < 0.05 was considered significant in all statistical analyses. RESULTS: Significant reductions in CDI scores in 35 analysed patients who completed 12 weeks intervention were observed after 12 weeks of intervention only in the Omega-3 group (p = 0.034). After stratification to depressive disorder and mixed anxiety depressive disorder subgroups, the DD subgroup receiving the Omega-3 FA fish oil showed statistically greater improvement (score reduction after 8 week treatment of -9.1 CDI, p = 0.0001) when compared to the MADD subgroup (score reduction after 8 week treatment -4.24 CDI, p = 0.271). CONCLUSIONS: CDI scores were reduced in the Omega-3 group and the depression subgroup had greater improvement than the mixed depressive/anxiety group. An Omega-3 fatty acid rich fish oil emulsion may be an effective adjuvant supplement during the treatment of depressive disorders in children. Trial registration ISRCTN81655012.

10.
Neurobiol Learn Mem ; 144: 36-47, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28602659

ABSTRACT

Ageing is associated with changes in the gut microbiome that may contribute to age-related changes in cognition. Previous work has shown that dietary supplements with multi-species live microorganisms can influence brain function, including induction of hippocampal synaptic plasticity and production of brain derived neurotrophic factor, in both young and aged rodents. However, the effect of such dietary supplements on memory processes has been less well documented, particularly in the context of aging. The main aim of the present study was to examine the impact of a long-term dietary supplement with a multi-species live Lactobacillus and Bifidobacteria mixture (Lactobacillus acidophilus CUL60, L. acidophilus CUL21, Bifidobacterium bifidum CUL20 and B. lactis CUL34) on tests of memory and behavioural flexibility in 15-17-month-old male rats. Following behavioural testing, the hippocampus and prefrontal cortex was extracted and analysed ex vivo using 1H nuclear magnetic resonance (1H NMR) spectroscopy to examine brain metabolites. The results showed a small beneficial effect of the dietary supplement on watermaze spatial navigation and robust improvements in long-term object recognition memory and short-term memory for object-in-place associations. Short-term object novelty and object temporal order memory was not influenced by the dietary supplement in aging rats. 1H NMR analysis revealed diet-related regional-specific changes in brain metabolites; which indicated changes in several pathways contributing to modulation of neural signaling. These data suggest that chronic dietary supplement with multi-species live microorganisms can alter brain metabolites in aging rats and have beneficial effects on memory.


Subject(s)
Aging , Behavior, Animal , Bifidobacterium , Hippocampus/metabolism , Lactobacillus , Memory , Prefrontal Cortex/metabolism , Probiotics/administration & dosage , Animals , Hippocampus/microbiology , Male , Maze Learning , Prefrontal Cortex/microbiology , Recognition, Psychology
11.
Acta Biochim Pol ; 63(3): 555-63, 2016.
Article in English | MEDLINE | ID: mdl-27262841

ABSTRACT

The Lipoprint system (Quantimetrix Corp., CA, USA), enables the determination of 10 high density lipoprotein (HDL) subfractions in contrast to the 5 HDL subfractions that can be determined by ultracentrifuge analysis. HDL subfractions, and their relationships to the arylesterase (PON1-A) and lactonase (PON1-L) activities of paraoxonase 1 (PON1), together with total-, very low density lipoprotein- and low density lipoprotein (LDL)-cholesterol and LDL subfractions were investigated in the serum of 27 mildly hypercholesterolemic children and 21 healthy controls. Our results suggest the antiatherogenity of large HDL (L-HDL) subfractions and the atherogenity of small HDL (S-HDL) subfractions in the study groups. However, the relationship between the intermediate HDL (I-HDL) subfractions with the LDL subfractions and other lipoproteins did not suggest that I-HDL subfractions are antiatherogenic. No significant association between PON1-A and the HDL subfractions was found. In contrast, PON1-L activity positively correlated with the antiatherogenic large HDL1 subfraction and negatively with intermediate HDL subfractions 4, 5 and 6. Our results contribute to the knowledge of the roles of total HDL and ten individual HDL subfractions in children and adolescents.


Subject(s)
Aryldialkylphosphatase/blood , Hypercholesterolemia/enzymology , Lipoproteins, HDL/blood , Adolescent , Case-Control Studies , Child , Female , Humans , Hypercholesterolemia/blood , Male , Pilot Projects
12.
Cartilage ; 7(1): 70-81, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26958319

ABSTRACT

OBJECTIVE: Glucosamine hydrochloride (GH) and chondroitin sulfate (CS) are commonly used for the treatment of osteoarthritis (OA). The aim of this study was to assess their effects, alone and in combination, on preventing aggrecan degradation and inflammation in an in vitro model of OA. DESIGN: To test the effects of GH and/or CS as a preventative treatment, cartilage explants were pretreated with the compound(s) using concentrations that showed no detrimental effect on chondrocyte viability. Interleukin-1α (IL-1α) was added to induce cartilage degradation, supernatant and explants were analyzed for proteoglycan degradation products, aggrecanase mRNA expression and activity, and for the release of inflammatory markers. RESULTS: Following treatment with IL-1α, 2 mg/mL dose of GH pretreatment was associated with a reduction of glycosaminoglycan release, reduced generation of the pathological interglobular domain aggrecan catabolites, decreased mRNA levels of ADAMTS-4 and -5 and reduced activity of ADAMTS-4. In contrast, CS alone did not have a significant effect on IL-1α-induced cartilage degradation and the addition of 0.4 mg/mL CS to 2 mg/mL GH did not further inhibit IL-1α-induced activity. Pretreatment with 2 mg/mL GH also reduced the release of inflammatory markers, prostaglandin E2 and nitric oxide induced by IL-1α while CS did not have a significant effect. CONCLUSIONS: The results suggest that GH prevents cartilage degradation mediated by aggrecanases ADAMTS-4 and -5, and may also reduce inflammation. This could be part of the mechanisms by which GH is effective in maintaining joint integrity and function, and preventing or delaying early symptoms of OA.

13.
PLoS One ; 11(3): e0151057, 2016.
Article in English | MEDLINE | ID: mdl-26950833

ABSTRACT

INTRODUCTION: Atherosclerosis is the underlying cause of cardiovascular disease that leads to more global mortalities each year than any other ailment. Consumption of active food ingredients such as phytosterols, omega-3 polyunsaturated fatty acids and flavanols are known to impart beneficial effects on cardiovascular disease although the combined actions of such agents in atherosclerosis is poorly understood. The aim of this study was to screen a nutritional supplement containing each of these active components for its anti-atherosclerotic effect on macrophages in vitro. RESULTS: The supplement attenuated the expression of intercellular adhesion molecule-1 and macrophage chemoattractant protein-1 in human and murine macrophages at physiologically relevant doses. The migratory capacity of human monocytes was also hindered, possibly mediated by eicosapentaenoic acid and catechin, while the ability of foam cells to efflux cholesterol was improved. The polarisation of murine macrophages towards a pro-inflammatory phenotype was also attenuated by the supplement. CONCLUSION: The formulation was able to hinder multiple key steps of atherosclerosis development in vitro by inhibiting monocyte recruitment, foam cell formation and macrophage polarisation towards an inflammatory phenotype. This is the first time a combination these ingredients has been shown to elicit such effects and supports its further study in preclinical in vivo models.


Subject(s)
Atherosclerosis/prevention & control , Dietary Supplements , Fatty Acids, Omega-3/pharmacology , Flavonols/pharmacology , Phytosterols/pharmacology , Animals , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Biological Transport/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Chemokine CCL2/genetics , Cholesterol/metabolism , Drug Interactions , Gene Expression Regulation/drug effects , Humans , Intercellular Adhesion Molecule-1/genetics , Interferon-gamma/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Mice , Monocytes/cytology , Monocytes/drug effects , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism
14.
Proc Nutr Soc ; 74(3): 235-44, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25612669

ABSTRACT

The recent availability of high-throughput nucleic acid sequencing technologies has rapidly advanced approaches to analysing the role of the gut microbiome in governance of human health, including gut health, and also metabolic, cardiovascular and mental health, inter alia. Recent scientific studies suggest that energy intake (EI) perturbations at the population level cannot account for the current obesity epidemic, and significant work is investigating the potential role of the microbiome, and in particular its metabolic products, notably SCFA, predominantly acetate, propionate and butyrate, the last of which is an energy source for the epithelium of the large intestine. The energy yield from dietary residues may be a significant factor influencing energy balance. This review posits that the contribution towards EI is governed by EI diet composition (not just fibre), the composition of the microbiome and by the levels of physical activity. Furthermore, we hypothesise that these factors do not exist in a steady state, but rather are dynamic, with both short- and medium-term effects on appetite regulation. We suggest that the existing modelling strategies for bacterial dynamics, specifically for growth in chemostat culture, are of utility in understanding the dynamic interplay of diet, activity and microbiomic organisation. Such approaches may be informative in optimising the application of dietary and microbial therapy to promote health.


Subject(s)
Appetite Regulation/physiology , Diet , Gastrointestinal Microbiome/physiology , Obesity/metabolism , Energy Intake , Energy Metabolism , Fatty Acids, Volatile/biosynthesis , Fatty Acids, Volatile/metabolism , Humans , Obesity/microbiology
15.
BMJ Open Gastroenterol ; 2(1): e000052, 2015.
Article in English | MEDLINE | ID: mdl-26719813

ABSTRACT

BACKGROUND: Vitamin D deficiency has been associated or implicated with the pathophysiology of the gastrointestinal conditions inflammatory bowel disease and colorectal cancer, as well as with depression. No trials or epidemiology studies to date have investigated a link with irritable bowel syndrome (IBS). A single case report has suggested a benefit in IBS of vitamin D supplementation. We hypothesised that IBS participants with vitamin D insufficiency would benefit from repletion in terms of their IBS symptoms. We undertook a pilot trial to provide data to support a power calculation and to justify a full trial. METHODS: This was a randomised, double blinded, three-arm parallel design trial of vitamin D, placebo or a combination of vitamin D and probiotics. Participants were further stratified according to whether they were vitamin D replete or insufficient. Vitamin D status was determined by blood test at baseline and exit; IBS symptoms were assessed by validated questionnaire; dietary intakes were assessed by food frequency questionnaire. RESULTS: A significant proportion of the IBS population were vitamin D deficient, such that the replete stratum could not be adequately recruited. There was a significant association in the baseline data between circulating vitamin D level and quality of life ("How much has IBS affected your life?"). Supplementation significantly improved vitamin D level versus placebo. IBS symptoms were not significantly improved in this pilot, although a power calculation was enabled from the intervention data. CONCLUSIONS: The IBS population exhibits significant levels of vitamin D insufficiency and would benefit from screening and possible supplementation. The impact of IBS on quality of life may be reduced by vitamin D level. Future trials should have a sample size of over 97. TRIAL REGISTRATION NUMBER: ICTRN 6116003917.

16.
Arch Dis Child ; 99(11): 1014-9, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24947281

ABSTRACT

OBJECTIVE: To evaluate a multistrain, high-dose probiotic in the prevention of eczema. DESIGN: A randomised, double-blind, placebo-controlled, parallel group trial. SETTINGS: Antenatal clinics, research clinic, children at home. PATIENTS: Pregnant women and their infants. INTERVENTIONS: Women from 36 weeks gestation and their infants to age 6 months received daily either the probiotic (Lactobacillus salivarius CUL61, Lactobacillus paracasei CUL08, Bifidobacterium animalis subspecies lactis CUL34 and Bifidobacterium bifidum CUL20; total of 10(10) organisms/day) or matching placebo. MAIN OUTCOME MEASURE: Diagnosed eczema at age 2 years. Infants were followed up by questionnaire. Clinical examination and skin prick tests to common allergens were done at 6 months and 2 years. RESULTS: The cumulative frequency of diagnosed eczema at 2 years was similar in the probiotic (73/214, 34.1%) and placebo arms (72/222, 32.4%; OR 1.07, 95% CI 0.72 to 1.6). Among the secondary outcomes, the cumulative frequency of skin prick sensitivity at 2 years was reduced in the probiotic (18/171; 10.5%) compared with the placebo arm (32/173; 18.5%; OR 0.52, 95% CI 0.28 to 0.98). The statistically significant differences between the arms were mainly in sensitisation to cow's milk and hen's egg proteins at 6 months. Atopic eczema occurred in 9/171 (5.3%) children in the probiotic arm and 21/173 (12.1%) in the placebo arm (OR 0.40, 95% CI 0.18 to 0.91). CONCLUSIONS: The study did not provide evidence that the probiotic either prevented eczema during the study or reduced its severity. However, the probiotic seemed to prevent atopic sensitisation to common food allergens and so reduce the incidence of atopic eczema in early childhood. TRIAL REGISTRATION NUMBER: ISRCTN26287422.


Subject(s)
Eczema/prevention & control , Probiotics/therapeutic use , Adult , Child , Child, Preschool , Double-Blind Method , Eczema/epidemiology , Female , Follow-Up Studies , Humans , Incidence , Infant , Infant, Newborn , Male , Pregnancy , Skin Tests , Surveys and Questionnaires
17.
Nutr Res ; 34(1): 17-24, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24418242

ABSTRACT

Longer-chain polyunsaturated fatty acids may have greater appetite-suppressing effects than shorter-chain, monosaturated, and saturated fatty acids. Because fish oils are predominantly composed of n-3 long-chain polyunsaturated fatty acid and may assist in the treatment of obesity comorbidities, their effect on body weight and body mass index is of interest. We hypothesized that daily supplementation with docosahexaenoic acid (DHA)-rich oil would reduce energy intake and body weight in overweight and obese women compared with supplementation with oleic acid (OA) rich oil. A double-blinded, randomized, parallel intervention was conducted. Body mass index (in kilograms per meter squared), body weight (in kilograms), body fat (in percent), and lean tissue (in kilograms) were measured at baseline and 12 weeks after intervention with DHA or OA. Diet diaries were also completed at these time points for estimation of energy and macronutrient intake. Subjects reported significantly lower energy (P = .020), carbohydrate (g) (P = .037), and fat (g) (P = .045) intake after DHA compared with OA. Body mass or composition was not affected by treatment, although a fall in body weight in the DHA group approached statistical significance (P = .089). Daily ingestion of DHA over a 12-week period may reduce energy intake in overweight and obese females, but longer-term and adequately powered studies using subjects of both sexes are needed. Other factors that should be considered include the following: the choice of control, the body mass index category of subjects, and ways of improving the compliancy and accuracy of dietary assessment.


Subject(s)
Body Weight , Energy Intake , Fatty Acids, Unsaturated/administration & dosage , Obesity/therapy , Overweight/therapy , Adult , Body Composition , Body Mass Index , Dietary Carbohydrates/administration & dosage , Dietary Fats/administration & dosage , Dietary Supplements , Docosahexaenoic Acids/administration & dosage , Double-Blind Method , Emulsions/administration & dosage , Female , Fish Oils/administration & dosage , Humans , Middle Aged , Oleic Acid/administration & dosage
18.
Free Radic Biol Med ; 75 Suppl 1: S29, 2014 Oct.
Article in English | MEDLINE | ID: mdl-26461330

ABSTRACT

BACKGROUND: Assessment of the cardiovascular disease (CVD) risk factors in children can predict clinical manifestations of atherosclerosis in adulthood. The arylesterase (PON1-A) and lactonase (PON1-L) activities of paraoxonase 1 (PON1) and lipid parameters (Total cholesterol (TCH), VLDL-cholesterol (VLDL), triacylglycerols (TAG), HDL-cholesterol (HDL), LDL-cholesterol (LDL) and LDL- and HDL-subfractions and their mutual associations in 27 hypercholesterolemic children and adolescents were investigated. METHODS: Serum levels of TCH and TAG were determined using a Hitachi 911 analyser (Roche Diagnostics, Switzerland). LDL- and HDL-subfractions were determined by Lipoprint® system (Quantimetrix, Corp., USA). PON1-A and PON1-L activities were determined according to Gan et al. (1991) and Aviram and Rosenblat (2008). RESULTS: PON1-A activity was higher compared to healthy children (134.1±26.2 vs. 118.16±7.05 U/ml) and PON1-L was not different from healthy controls. Increased levels of atherogenic risk factors TCH, VLDL, IDL1 subfraction and decreased levels of the antiatherogenic IDL3 and LDL1 subfractions were observed in the hypercholesterolemic children compared to reference values. Increased levels of large HDL subfractions, comparable levels of intermediate HDL and lower levels of small HDL subfractions were observed in hypercholesterolemic children compared to healthy adults (in absence of data available for healthy children). No significant correlation between PON1-A and HDL subfractions was found. PON1-L activity positively correlated with antiatherogenic large HDL1 subfraction and negatively correlated with intermediate HDL4, 5 and 6 subfractions. CONCLUSIONS: The findings suggest that the PON1-L activity rather than PON1-A activity play a protective role in atherosclerosis. We confirmed atheroprotective effect of large and atherogenic properties of small HDL subfractions. The intermediate HDL subfractions probably play no atheroprotective role.

19.
PLoS One ; 8(7): e67912, 2013.
Article in English | MEDLINE | ID: mdl-23874465

ABSTRACT

BACKGROUND: The vulnerability of clinical trials to volunteer bias is under-reported. Volunteer bias is systematic error due to differences between those who choose to participate in studies and those who do not. METHODS AND RESULTS: This paper extends the applications of the concept of volunteer bias by using data from a trial of probiotic supplementation for childhood atopy in healthy dyads to explore 1) differences between a) trial participants and aggregated data from publicly available databases b) participants and non-participants as the trial progressed 2) impact on trial findings of weighting data according to deprivation (Townsend) fifths in the sample and target populations. 1) a) Recruits (n = 454) were less deprived than the target population, matched for area of residence and delivery dates (n = 6,893) (mean [SD] deprivation scores 0.09[4.21] and 0.79[4.08], t = 3.44, df = 511, p<0.001). b) i) As the trial progressed, representation of the most deprived decreased. These participants and smokers were less likely to be retained at 6 months (n = 430[95%]) (OR 0.29,0.13-0.67 and 0.20,0.09-0.46), and 2 years (n = 380[84%]) (aOR 0.68,0.50-0.93 and 0.55,0.28-1.09), and consent to infant blood sample donation (n = 220[48%]) (aOR 0.72,0.57-0.92 and 0.43,0.22-0.83). ii) Mothers interested in probiotics or research or reporting infants' adverse events or rashes were more likely to attend research clinics and consent to skin-prick testing. Mothers participating to help children were more likely to consent to infant blood sample donation. 2) In one trial outcome, atopic eczema, the intervention had a positive effect only in the over-represented, least deprived group. Here, data weighting attenuated risk reduction from 6.9%(0.9-13.1%) to 4.6%(-1.4-+10.5%), and OR from 0.40(0.18-0.91) to 0.56(0.26-1.21). Other findings were unchanged. CONCLUSIONS: Potential for volunteer bias intensified during the trial, due to non-participation of the most deprived and smokers. However, these were not the only predictors of non-participation. Data weighting quantified volunteer bias and modified one important trial outcome. TRIAL REGISTRATION: This randomised, double blind, parallel group, placebo controlled trial is registered with the International Standard Randomised Controlled Trials Register, Number (ISRCTN) 26287422. Registered title: Probiotics in the prevention of atopy in infants and children.


Subject(s)
Randomized Controlled Trials as Topic , Research Design , Selection Bias , Volunteers , Adult , Child, Preschool , Female , Humans , Infant , Longitudinal Studies , Male , Mothers , Outcome and Process Assessment, Health Care , Risk Factors
20.
Nutr J ; 12: 7, 2013 Jan 08.
Article in English | MEDLINE | ID: mdl-23297818

ABSTRACT

BACKGROUND: Assessment of cardiovascular disease (CVD) risk factors can predict clinical manifestations of atherosclerosis in adulthood. In this pilot study with hypercholesterolemic children and adolescents, we investigated the effects of a combination of plant sterols, fish oil and B vitamins on the levels of four independent risk factors for CVD; LDL-cholesterol, triacylglycerols, C-reactive protein and homocysteine. METHODS: Twenty five participants (mean age 16 y, BMI 23 kg/m2) received daily for a period of 16 weeks an emulsified preparation comprising plant sterols esters (1300 mg), fish oil (providing 1000 mg eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA)) and vitamins B12 (50 µg), B6 (2.5 mg), folic acid (800 µg) and coenzyme Q10 (3 mg). Atherogenic and inflammatory risk factors, plasma lipophilic vitamins, provitamins and fatty acids were measured at baseline, week 8 and 16. RESULTS: The serum total cholesterol, LDL- cholesterol, VLDL-cholesterol, subfractions LDL-2, IDL-1, IDL-2 and plasma homocysteine levels were significantly reduced at the end of the intervention period (p<0.05). The triacylglycerols levels decreased by 17.6%, but did not reach significance. No significant changes in high sensitivity C-reactive protein, HDL-cholesterol and apolipoprotein A-1 were observed during the study period. After standardisation for LDL cholesterol, there were no significant changes in the levels of plasma γ-tocopherol, ß-carotene and retinol, except for reduction in α-tocopherol levels. The plasma levels of n-3 fatty acids increased significantly with the dietary supplementation (p<0.05). CONCLUSIONS: Daily intake of a combination of plant sterols, fish oil and B vitamins may modulate the lipid profile of hypercholesterolemic children and adolescents. TRIAL REGISTRATION: Current Controlled Trials ISRCTN89549017.


Subject(s)
Cardiovascular Diseases/prevention & control , Fish Oils/administration & dosage , Hypercholesterolemia/prevention & control , Phytosterols/administration & dosage , Vitamin B Complex/administration & dosage , Adolescent , Apolipoprotein A-I/blood , C-Reactive Protein/analysis , Child , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Fatty Acids, Omega-3/blood , Female , Humans , Male , Pilot Projects , Risk Factors , Triglycerides/blood , Young Adult , beta Carotene/blood , gamma-Tocopherol/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...