Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 6(2): 908-15, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24281737

ABSTRACT

We have demonstrated unique CdS0.5Se0.5 and CdSe quantum dot-glass nanosystems with quantum confinement effect. The stable, monodispersed CdS0.5Se0.5 and CdSe quantum dots (QDs) of size 2 to 12 nm have been grown in a germanate glass matrix by a simple melt quench technique at moderate temperature. XRD and Raman studies show formation of hexagonal CdS0.5Se0.5 and CdSe in the glass matrix. The quantum confinement of CdS0.5Se0.5 and CdSe was studied using TEM and UV-Vis spectroscopy. The band gap of the glass nanosystem was tuned from 3.6 to 1.8 eV by controlling the CdS0.5Se0.5 quantum dot size in the glass matrix. It can be further tuned to 1.68 eV using growth of CdSe quantum dots in the glass matrix. Considering the tuneable band gap of the CdS0.5Se0.5 and CdSe quantum dot-glass nanosystem for the visible light absorption, a study of size tuneable photocatalytic activity for hydrogen generation from hydrogen sulfide splitting was performed under visible light irradiation for the first time. The utmost hydrogen evolution, i.e. 8164.53 and 7257.36 µmol h(-1) g(-1) was obtained for the CdS0.5Se0.5 and CdSe quantum dot-glass nanosystems, respectively. The apparent quantum yield (AQY) was observed to be 26% and 21% for the CdS0.5Se0.5 and CdSe quantum dot-glass nanosystems, respectively. It is noteworthy that the present glass nanosystem as a photocatalyst was found to be very stable as compared to naked powder photocatalysts.

2.
Environ Sci Technol ; 47(12): 6664-72, 2013 Jun 18.
Article in English | MEDLINE | ID: mdl-23672184

ABSTRACT

We have demonstrated a template-free large-scale synthesis of nanostructured Cd(x)Zn(1-x)S by a simple and a low-temperature solid-state method. Cadmium oxide, zinc oxide, and thiourea in various concentration ratios are homogenized at moderate temperature to obtain nanostructured Cd(x)Zn(1-x)S. We have also demonstrated that phase purity of the sample can be controlled with a simple adjustment of the amount of Zn content and nanocrystalline Cd(x)Zn(1-x)S(x = 0.5 and 0.9) of the hexagonal phase with 6-8 nm sized and 4-5 nm sized Cd(0.1)Zn(0.9)S of cubic phase can be easily obtained using this simple approach. UV-vis and PL spectrum indicate that the optical properties of as synthesized nanostructures can also be modulated by tuning their compositions. Considering the band gap of the nanostructured Cd(x)Zn(1-x)S well within the visible region, the photocatalytic activity for H2 generation using H2S and methylene blue dye degradation is performed under visible-light irradiation. The maximum H2 evolution of 8320 µmol h(-1)g(-1) is obtained using nanostructured Cd(0.1)Zn(0.9)S, which is four times higher than that of bulk CdS (2020 µmol h(-1) g(-1)) and the reported nanostructured CdS (5890 µmol h(-1)g(-1)). As synthesized Cd(0.9)Zn(0.1)S shows 2-fold enhancement in degradation of methylene blue as compared to the bulk CdS. It is noteworthy that the synthesis method adapted provides an easy, inexpensive, and pollution-free way to synthesize very tiny nanoparticles of Cd(x)Zn(1-x)S with a tunnable band structure on a large scale, which is quite difficult to obtain by other methods. More significantly, environmental benign enhanced H2 production from hazardous H2S using Cd(x)Zn(1-x)S is demonstrated for the first time.


Subject(s)
Cadmium Compounds/chemistry , Hydrogen/chemistry , Nanostructures/chemistry , Selenium Compounds/chemistry , Sunlight , Zinc Compounds/chemistry
3.
Small ; 7(7): 957-64, 2011 Apr 04.
Article in English | MEDLINE | ID: mdl-21387556

ABSTRACT

The simple, template-free, low-temperature, large-scale synthesis of nanostructured CdS with the hexagonal wurtzite phase from bulk cadmium oxide under solid-phase conditions is demonstrated for the first time. The novel approach involves the homogenization of cadmium oxide (CdO) and thiourea in various stoichiometric ratios at moderate temperature. Among the different molar ratios of CdO and thiourea studied, the CdO/NH(2) CSNH(2) molar ratio of 1:2 is found to be the best to obtain highly pure CdS. The obtained CdS nanostructures exhibit excellent cubic morphology and high specific surface area with a particle size in the range of 5-7 nm. The bandgap of the nanostructured CdS is in the range of 2.42 to 2.46 eV due to its nanocrystalline nature. In photoluminescence studies, emission is observed at 520.34 and 536.42 nm, which is characteristic of the greenish-yellow region of the visible spectrum. Considering the bandgap of the CdS is within the visible region, the photocatalytic activity for H(2) generation and organic dye degradation are performed under visible-light irradiation. The maximum H(2) evolution of 2945 µmol h(-1) is obtained using nanostructured CdS prepared in the 1:2 ratio, which is three times higher than that of bulk CdS (1010 µmol h(-1) ). CdS synthesized using the 1:2 molar ratio shows maximum methylene blue degradation (87.5%) over a period of 60 min, which is approximately four times higher than that of bulk CdS (22%). This amazing performance of the material is due to its nanocrystalline nature and the high surface area of the CdS. The proposed simple methodology is believed to be a significant breakthrough in the field of nanotechnology, and the method can be further generalized as a rational preparation scheme for the large-scale synthesis of various other nanostructured metal sulfides.


Subject(s)
Cadmium Compounds/chemistry , Nanostructures/chemistry , Sulfides/chemistry , Catalysis , Microscopy, Electron, Transmission , Nanotechnology/methods , Oxides/chemistry , Photochemistry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...