Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Immune Network ; : 163-170, 2017.
Article in English | WPRIM (Western Pacific) | ID: wpr-191878

ABSTRACT

The expansion of allergen-specific CD4⁺ T cells is a critical step in inducing airway inflammation during allergic asthma. Such clonal expansion of T cells is initiated through the interaction between allergen-bearing dendritic cells and allergen-specific naïve T cells in the draining lymph nodes. Whether such T cell clonal expansion also occurs in the lung, the primary organ encountering inhaled allergens, remains unclear. Compared with wild-type mice, we found similar frequencies of CD4⁺ T cells in the lung of lymph node-deficient Rorgt(gfp/gfp) mice after repeated exposure to inhaled allergens. In addition, we observed an evident population of CD4⁺ T cells that underwent clonal expansion in the lung of allergen-challenged mice treated with an S1P antagonist FTY720 in an in vivo proliferation study with CFSE-labeled OT-II T cells. Moreover, the expansion of allergen-specific CD4⁺ T cells was significantly enhanced in the lungs of Rorgt(gfp/gfp) mice in comparison to that of wild-type mice. These results together demonstrate that the clonal expansion of allergen-specific CD4⁺ T cells occurs in the absence of the lymph nodes, indicating that the lung can act as a primary site of the clonal expansion of CD4⁺ T cells in response to inhaled allergens.


Subject(s)
Animals , Mice , Allergens , Asthma , Dendritic Cells , Fingolimod Hydrochloride , Inflammation , Lung , Lymph Nodes , T-Lymphocytes
2.
Article in English | WPRIM (Western Pacific) | ID: wpr-94048

ABSTRACT

Understanding the developmental mechanisms of humoral immunity against intranasal antigens is essential for the development of therapeutic approaches against air-borne pathogens as well as allergen-induced pulmonary inflammation. Follicular helper T (Tfh) cells expressing CXCR5 are required for humoral immunity by providing IL-21 and ICOS costimulation to activated B cells. However, the regulation of Tfh cell responses against intranasal antigens remains unclear. Here, we found that the generation of Tfh cells and germinal center B cells in the bronchial lymph node against intranasal proteinase antigens was independent of TGF-β. In contrast, administration of STAT3 inhibitor STA-21 suppressed the generation of Tfh cells and germinal center B cells. Compared with wild-type OT-II T cells, STAT3-deficient OT-II T cells transferred into recipients lacking T cells not only showed significantly reduced frequency Tfh cells, but also induced diminished IgG as well as IgE specific for the intranasal antigens. Co-transfer study of wild-type OT-II and STAT3-deficient OT-II T cells revealed that the latter failed to differentiate into Tfh cells. These findings demonstrate that T cell-intrinsic STAT3 is required for the generation of Tfh cells to intranasal antigens and that targeting STAT3 might be an effective approach to ameliorate antibody-mediated pathology in the lung.


Subject(s)
Allergens , B-Lymphocytes , Germinal Center , Immunity, Humoral , Immunoglobulin E , Immunoglobulin G , Immunoglobulins , Lung , Lymph Nodes , Pathology , Pneumonia , T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL
...