Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
Biomacromolecules ; 25(5): 3011-3017, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38689515

ABSTRACT

Stabilization against the dilution-dependent disassembly of self-assembled nanoparticles is a requirement for in vivo application. Herein, we propose a simple and biocompatible cross-linking reaction for the stabilization of a series of nanoparticles formed by the self-assembly of amphiphilic HA-b-ELP block copolymers, through the alkylation of methionine residues from the ELP block with diglycidyl ether compounds. The core-cross-linked nanoparticles retain their colloidal properties, with a spherical core-shell morphology, while maintaining thermoresponsive behavior. As such, instead of a reversible disassembly when non-cross-linked, a reversible swelling of nanoparticles' core and increase of hydrodynamic diameter are observed with lowering of the temperature.


Subject(s)
Cross-Linking Reagents , Nanoparticles , Nanoparticles/chemistry , Cross-Linking Reagents/chemistry , Temperature , Polymers/chemistry , Elastin/chemistry , Particle Size
2.
Macromol Rapid Commun ; : e2400079, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662380

ABSTRACT

Protein-polymer conjugates and polymeric nanomaterials hold great promise in many applications including biomaterials, medicine, or nanoelectronics. In this work, the first polymerization-induced self-assembly (PISA) approach performed in aqueous medium enabling protein-polymer conjugates and nanoparticles entirely composed of amino acids is presented by using ring-opening polymerization (ROP). It is indeed shown that aqueous ring-opening polymerization-induced self-assembly (ROPISA) can be used with protein or peptidic macroinitiators without prior chemical modification and afford the simple preparation of nanomaterials with protein-like property, for example, to implement biomimetic thermoresponsivity in drug delivery.

3.
Adv Healthc Mater ; : e2303765, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38651610

ABSTRACT

Despite progress in bone tissue engineering, reconstruction of large bone defects remains an important clinical challenge. Here, we developed a biomaterial designed to recruit bone cells, endothelial cells, and neuronal fibers within the same matrix, enabling bone tissue regeneration. The bioactive matrix is based on modified elastin-like polypeptides (ELPs) grafted with laminin-derived adhesion peptides IKVAV and YIGSR, and the SNA15 peptide for retention of hydroxyapatite (HA) particles. The composite matrix shows suitable porosity, interconnectivity, biocompatibility for endothelial cells, and the ability to support neurites outgrowth by sensory neurons. Subcutaneous implantation led to the formation of osteoid tissue, characterized by the presence of bone cells, vascular networks, and neuronal structures, while minimizing inflammation. Using a rat femoral condyle defect model, we performed longitudinal micro-CT analysis, which demonstrates a significant increase in the volume of mineralized tissue when using the ELP-based matrix compared to empty defects and a commercially available control (Collapat). Furthermore, visible blood vessel networks and nerve fibers are observed within the lesions after a period of two weeks. By incorporating multiple key components that support cell growth, mineralization, and tissue integration, this ELP-based composite matrix provides a holistic and versatile solution to enhance bone tissue regeneration. This article is protected by copyright. All rights reserved.

4.
Biomacromolecules ; 24(11): 5027-5034, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37877162

ABSTRACT

Polymeric micelles and especially those based on natural diblocks are of particular interest due to their advantageous properties in terms of molecular recognition, biocompatibility, and biodegradability. We herein report a facile and straightforward synthesis of thermoresponsive elastin-like polypeptide (ELP) and oligonucleotide (ON) diblock bioconjugates, ON-b-ELP, through copper-catalyzed azide-alkyne cycloaddition. The resulting thermosensitive diblock copolymer self-assembles above its critical micelle temperature (CMT ∼30 °C) to form colloidally stable micelles of ∼50 nm diameter. The ON-b-ELP micelles hybridize with an ON complementary strand and maintain their size and stability. Next, we describe the capacity of these micelles to bind proteins, creating more complex structures using the classic biotin-streptavidin pairing and the specific recognition between a transcription factor protein and the ON strand. In both instances, the micelles are intact, form larger structures, and retain their sensitivity to temperature.


Subject(s)
Micelles , Transcription Factors , Biomimetics , Peptides/chemistry , Polymers/chemistry , Temperature
6.
Adv Mater ; 35(33): e2301856, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37149761

ABSTRACT

In response to variations in osmotic stress, in particular to hypertonicity associated with biological dysregulations, cells have developed complex mechanisms to release their excess water, thus avoiding their bursting and death. When water is expelled, cells shrink and concentrate their internal bio(macro)molecular content, inducing the formation of membraneless organelles following a liquid-liquid phase separation (LLPS) mechanism. To mimic this intrinsic property of cells, functional thermo-responsive elastin-like polypeptide (ELP) biomacromolecular conjugates are herein encapsulated into self-assembled lipid vesicles using a microfluidic system, together with polyethylene glycol (PEG) to mimic cells' interior crowded microenvironment. By inducing a hypertonic shock onto the vesicles, expelled water induces a local increase in concentration and a concomitant decrease in the cloud point temperature (Tcp ) of ELP bioconjugates that phase separate and form coacervates mimicking cellular stress-induced membraneless organelle assemblies. Horseradish peroxidase (HRP), as a model enzyme, is bioconjugated to ELPs and is locally confined in coacervates as a response to osmotic stress. This consequently increases local HRP and substrate concentrations and accelerates the kinetics of the enzymatic reaction. These results illustrate a unique way to fine-tune enzymatic reactions dynamically as a response to a physiological change in isothermal conditions.


Subject(s)
Cell Physiological Phenomena , Peptides , Osmotic Pressure , Peptides/chemistry , Horseradish Peroxidase , Organelles , Water
7.
Angew Chem Int Ed Engl ; 62(24): e202300511, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37083071

ABSTRACT

We describe here a near infrared light-responsive elastin-like peptide (ELP)-based targeted nanoparticle (NP) that can rapidly switch its size from 120 to 25 nm upon photo-irradiation. Interestingly, the targeting function, which is crucial for effective cargo delivery, is preserved after transformation. The NPs are assembled from (targeted) diblock ELP micelles encapsulating photosensitizer TT1-monoblock ELP conjugates. Methionine residues in this monoblock are photo-oxidized by singlet oxygen generated from TT1, turning the ELPs hydrophilic and thus trigger NP dissociation. Phenylalanine residues from the diblocks then interact with TT1 via π-π stacking, inducing the re-formation of smaller NPs. Due to their small size and targeting function, the NPs penetrate deeper in spheroids and kill cancer cells more efficiently compared to the larger ones. This work could contribute to the design of "smart" nanomedicines with deeper penetration capacity for effective anticancer therapies.


Subject(s)
Elastin , Nanoparticles , Elastin/chemistry , Peptides/chemistry , Nanoparticles/chemistry , Micelles
9.
Adv Drug Deliv Rev ; 191: 114589, 2022 12.
Article in English | MEDLINE | ID: mdl-36323382

ABSTRACT

Nature is an everlasting source of inspiration for chemical and polymer scientists seeking to develop ever more innovative materials with greater performances. Natural structural proteins are particularly scrutinized to design biomimetic materials. Often characterized by repeat peptide sequences, that together interact by inter- and intramolecular interactions and form a 3D skeleton, they contribute to the mechanical properties of individual cells, tissues, organs, and whole organisms. (Numata, K. Polymer Journal 2020, 52, 1043-1056) Among them elastin, and its main repeat sequences, have been a source of intense studies for more than 50 years resulting in the specific research field dedicated to elastin-like polypeptides (ELPs). These are currently widely investigated in different applications, namely protein purification, tissue engineering, and drug delivery, and some technologies based on ELPs are currently explored by several start-up companies. In the present review, we have summarized pioneering contributions on ELPs, progress made in their genetic engineering, and understanding of their thermal behavior and self-assembly properties. Considered as intrinsically disordered protein polymers, we have finally focused on the works where ELPs have been conjugated to other synthetic macromolecules as covalent hybrid, statistical, graft, or block copolymers, highlighting the huge opportunities that have still not been explored so far.


Subject(s)
Elastin , Peptides , Humans , Elastin/chemistry , Peptides/chemistry , Amino Acid Sequence , Drug Delivery Systems
10.
Biomater Sci ; 10(22): 6365-6376, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36168976

ABSTRACT

The design of synthetic (bio)macromolecules that combine biocompatibility, self-assembly and bioactivity properties at the molecular level is an intense field of research for biomedical applications such as (nano)medicine. In this contribution, we have designed and synthesized a library of bioactive and thermo-responsive bioconjugates from elastin-like polypeptides (ELPs) and hyaluronic acid (HA) in order to access bioactive self-assembled nanoparticles. These were prepared by a simple synthetic and purification strategy, compatible with the requirements for biological applications and industrial scale-up. A series of 9 HA-b-ELP bioconjugates with different compositions and block lengths was synthesized under aqueous conditions by strain-promoted azide-alkyne cycloaddition (SPAAC), avoiding the use of catalysts, co-reactants and organic solvents, and isolated by a simple centrifugation step. An extensive physico-chemical study was then performed on the whole library of bioconjugates in an attempt to establish structure-property relationships. In particular, the determination of the critical conditions for thermally driven self-assembly was carried out upon temperature (CMT) and concentration (CMC) gradients, leading to a phase diagram for each of these bioconjugates. These parameters and the size of nanoparticles were found to depend on the chemical composition of the bioconjugates, namely on the respective size of individual blocks. Understanding the mechanism underlying this dependency is a real asset for designing more effective experiments: with key criteria defined (e.g. concentration, temperature, salinity, and biological target), the composition of the best candidates can be rationalized. In particular, four of the bioconjugates (HA4.6k-ELPn80 or n100 and HA24k-ELPn80 or n100) were found to self-assemble into well-defined spherical core-shell nanoparticles, with a negative surface charge due to the HA block exposed at the surface, a hydrodynamic diameter between 40 and 200 nm under physiological conditions and a good stability over time at 37 °C. We therefore propose here a versatile and simple design of smart, controllable, and bioactive nanoparticles that present different behaviors depending on the diblocks' composition.


Subject(s)
Hyaluronic Acid , Nanoparticles , Elastin/chemistry , Peptides/chemistry , Nanoparticles/chemistry , Micelles , Temperature
11.
Adv Sci (Weinh) ; 8(24): e2102508, 2021 12.
Article in English | MEDLINE | ID: mdl-34719874

ABSTRACT

Design of reversible organelle-like microcompartments formed by liquid-liquid phase separation in cell-mimicking entities has significantly advanced the bottom-up construction of artificial eukaryotic cells. However, organizing the formation of artificial organelle architectures in a spatiotemporal manner within complex primitive compartments remains scarcely explored. In this work, thermoresponsive hybrid polypeptide-polymer conjugates are rationally engineered and synthesized, resulting from the conjugation of an intrinsically disordered synthetic protein (IDP), namely elastin-like polypeptide, and synthetic polymers (poly(ethylene glycol) and dextran) that are widely used as macromolecular crowding agents. Cell-like constructs are built using droplet-based microfluidics that are filled with such bioconjugates and an artificial cytoplasm system that is composed of specific polymers conjugated to the IDP. The distinct spatial organizations of two polypeptide-polymer conjugates and the dynamic assembly and disassembly of polypeptide-polymer coacervate droplets in response to temperature are studied in the cytomimetic protocells. Furthermore, a monoblock IDP with longer length is concurrently included with bioconjugates individually inside cytomimetic compartments. Both bioconjugates exhibit an identical surfactant-like property, compartmentalizing the monoblock IDP coacervates via temperature control. These findings lay the foundation for developing hierarchically structured synthetic cells with interior organelle-like structures which could be designed to localize in desired phase-separated subcompartments.


Subject(s)
Artificial Cells/chemistry , Intrinsically Disordered Proteins/chemistry , Macromolecular Substances/chemistry , Organelles/chemistry , Polymers/chemistry , Microfluidics/methods
12.
Biomacromolecules ; 22(12): 4956-4966, 2021 12 13.
Article in English | MEDLINE | ID: mdl-34751573

ABSTRACT

Three-dimensional (3D) bioprinting offers a great alternative to traditional techniques in tissue reconstruction, based on seeding cells manually into a scaffold, to better reproduce organs' complexity. When a suitable bioink is engineered with appropriate physicochemical properties, such a process can advantageously provide a spatial control of the patterning that improves tissue reconstruction. The design of an adequate bioink must fulfill a long list of criteria including biocompatibility, printability, and stability. In this context, we have developed a bioink containing a precisely controlled recombinant biopolymer, namely, elastin-like polypeptide (ELP). This material was further chemoselectively modified with cross-linkable moieties to provide a 3D network through photopolymerization. ELP chains were additionally either functionalized with a peptide sequence Gly-Arg-Gly-Asp-Ser (GRGDS) or combined with collagen I to enable cell adhesion. Our ELP-based bioinks were found to be printable, while providing excellent mechanical properties such as stiffness and elasticity in their cross-linked form. Besides, they were demonstrated to be biocompatible, showing viability and adhesion of dermal normal human fibroblasts (NHF). Expressions of specific extracellular matrix (ECM) protein markers as pro-collagen I, elastin, fibrillin, and fibronectin were revealed within the 3D network containing cells after only 18 days of culture, showing the great potential of ELP-based bioinks for tissue engineering.


Subject(s)
Bioprinting , Bioprinting/methods , Elastin , Humans , Peptides , Printing, Three-Dimensional , Tissue Engineering/methods , Tissue Scaffolds/chemistry
13.
Bioconjug Chem ; 32(8): 1719-1728, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34240853

ABSTRACT

Stimuli-responsive recombinant elastin-like polypeptides (ELPs) are artificial protein polymers derived from the hydrophobic domain of tropoelastin that have attracted significant interest for drug delivery and tissue engineering applications. In the present study, we have conjugated a photosensitizer (PS) to a hydrophobic methionine-containing ELP scaffold, which upon reaction with singlet oxygen (1O2) is transformed into a hydrophilic sulfoxide derivative facilitating the disassembly of photosensitizer-delivery particles during the photodynamic therapy (PDT) process. A peripherally substituted carboxy-Zn(II)-phthalocyanine derivative (TT1) bearing a carboxyl group directly linked to the Pc-ring, and presenting an absorption maximum around 680 nm, was selected as PS which simultaneously acted as a photooxidation catalyst. A TT1-ELP[M1V3-40] conjugate was prepared from ELP[M1V3-40] modified with an alkyne group at the N-terminal chain end, and from TT1-amide-C3-azide by copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) reaction. This innovative model photooxidation sensitive PS delivery technology offers promising attributes in terms of temperature-controlled particle formation and oxidation-triggered release, narrow molar mass distribution, reproducibility, scalability, non-immunogenicity, biocompatibility, and biodegradability for pharmaceutical applications in an effort to improve the clinical effectiveness of PDT treatments.


Subject(s)
Elastin/chemistry , Oxidants, Photochemical/pharmacology , Peptides/pharmacology , Humans , Micelles , Molecular Structure , Oxidants, Photochemical/chemistry , Oxidation-Reduction , Peptides/chemistry , Photochemotherapy
14.
Polymers (Basel) ; 13(9)2021 May 01.
Article in English | MEDLINE | ID: mdl-34062852

ABSTRACT

Diblock copolymers based-on elastin-like polypeptide (ELP) have the potential to undergo specific phase transitions when thermally stimulated. This ability is especially suitable to form carriers, micellar structures for instance, for delivering active cargo molecules. Here, we report the design and study of an ELP diblock library based on ELP-[M1V3-i]-[I-j]. First, ELP-[M1V3-i]-[I-j] (i = 20, 40, 60; j = 20, 90) that showed a similar self-assembly propensity (unimer-to-aggregate transition) as their related monoblocks ELP-[M1V3-i] and ELP-[I-j]. By selectively oxidizing methionines of ELP-[M1V3-i] within the different diblocks structures, we have been able to access a thermal phase transition with three distinct regimes (unimers, micelles, aggregates) characteristic of well-defined ELP diblocks.

15.
Angew Chem Int Ed Engl ; 60(27): 15036-15040, 2021 06 25.
Article in English | MEDLINE | ID: mdl-33856091

ABSTRACT

Biomimetic design to afford smart functional biomaterials with exquisite properties represents synthetic challenges and provides unique perspectives. In this context, elastin-like polypeptides (ELPs) recently became highly attractive building blocks in the development of lipoprotein-based membranes. In addition to the bioengineered post-translational modifications of genetically encoded recombinant ELPs developed so far, we report here a simple and versatile method to design biohybrid brush-like lipid-grafted-ELPs using chemical post-modification reactions. We have explored a combination of methionine alkylation and click chemistry to create a new class of hybrid lipoprotein mimics. Our design allowed the formation of biomimetic vesicles with controlled permeability, correlated to the temperature-responsiveness of ELPs.


Subject(s)
Biomimetic Materials/chemistry , Lipids/chemistry , Peptides/chemistry , Temperature , Biomimetic Materials/chemical synthesis , Molecular Structure
16.
ACS Macro Lett ; 10(1): 65-70, 2021 01 19.
Article in English | MEDLINE | ID: mdl-35548980

ABSTRACT

A library of synthetic elastin-like glycopolypeptides were synthesized and screened by microscale thermophoresis to identify key structural parameters affecting lectin binding efficacy. While polypeptide backbone size and glycovalency were found to have little influence, the presence of a linker at the anomeric position of galactose and the absence of positive charge on the polypeptide residue holding the sugar unit were found to be critical for the binding to RCA120.


Subject(s)
Elastin , Lectins , Galactose/chemistry , Glycopeptides/chemistry , Lectins/chemistry , Peptides
17.
Biomacromolecules ; 22(1): 76-85, 2021 01 11.
Article in English | MEDLINE | ID: mdl-32379435

ABSTRACT

Selective lectin binding and sorting was achieved using thermosensitive glycoconjugates derived from recombinant elastin-like polypeptides (ELPs) in simple centrifugation-precipitation assays. A recombinant ELP, (VPGXG)40, containing periodically spaced methionine residues was used to enable chemoselective postsynthetic modification via thioether alkylation using alkyne functional epoxide derivatives. The resulting sulfonium groups were selectively demethylated to give alkyne functionalized homocysteine residues, which were then reacted with azido-functionalized monosaccharides to obtain ELP glycoconjugates with periodic saccharide functionality. These modifications were also found to allow modulation of ELP temperature dependent water solubility. The multivalent ELP glycoconjugates were evaluated for specific recognition, binding and separation of the lectin Ricinus communis agglutinin (RCA120) from a complex protein mixture. RCA120 and ELP glycoconjugate interactions were evaluated using laser scanning confocal microscopy and dynamic light scattering. Due to the thermoresponsive nature of the ELP glycoconjugates, it was found that heating a mixture of galactose-functionalized ELP and RCA120 in complex media selectively yielded a phase separated pellet of ELP-RCA120 complexes. Based on these results, ELP glycoconjugates show promise as designer biopolymers for selective protein binding and sorting.


Subject(s)
Elastin , Lectins , Peptides , Solubility , Temperature
18.
Int J Pharm ; 586: 119537, 2020 Aug 30.
Article in English | MEDLINE | ID: mdl-32531450

ABSTRACT

Medicine formulations at the nanoscale, referred to as nanomedicines, have managed to overcome key challenges encountered during the development of new medical treatments and entered clinical practice, but considerable improvement in terms of local efficacy and reduced toxicity still need to be achieved. Currently, the fourth-generation of nanomedicines is being developed, employing biocompatible nanocarriers that are targeted, multifunctional, and stimuli-responsive. Proteins and polypeptides can fit the standards of an efficient nanovector because of their biodegradability, intrinsic bioactivity, chemical reactivity, stimuli-responsiveness, and ability to participate in complex supramolecular assemblies. These biomacromolecules can be obtained from natural resources, produced in heterologous hosts, or chemically synthesized, allowing for different designs to access suitable carriers for a variety of drugs. To enhance targeting or therapeutic functionality, additional chemical modifications can be applied. This review demonstrates the potential of polypeptide and protein materials for the design of drug delivery nanocarriers with a special focus on their preclinical evaluation in vitro and in vivo.


Subject(s)
Drug Carriers/chemistry , Drug Delivery Systems , Nanoparticles , Animals , Drug Design , Humans , Peptides/chemistry , Proteins/chemistry
19.
Angew Chem Int Ed Engl ; 59(32): 13591-13596, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32363767

ABSTRACT

In this study, an original method of macromolecular design was used to develop a hyaluronidase-1 (HYAL1) inhibitor from its principal substrate, hyaluronic acid (HA). HA-based nanoparticles (HA-NP) were obtained by copolymer self-assembly and their effects on HYAL1 activity were investigated by combining different analytical tools. Compared to HA, HA-NP exhibited an enhanced stability against HYAL1 degradation while maintaining its interaction with the HA receptors CD44 and aggrecan. HA-NP displayed a strong and selective inhibition of HYAL1 activity and retarded the hydrolysis of higher-molar-mass HA in solution. A co-nanoprecipitation process was used to formulate a range of hybrid nanoparticle samples, which demonstrated the specificity and efficiency of HA-NP in HYAL1 inhibition.


Subject(s)
Enzyme Inhibitors/chemistry , Hyaluronic Acid/chemistry , Hyaluronoglucosaminidase/antagonists & inhibitors , Nanoparticles/chemistry , Enzyme Assays , Humans , Polyglutamic Acid/analogs & derivatives , Polyglutamic Acid/chemistry
20.
Angew Chem Int Ed Engl ; 59(27): 11028-11036, 2020 06 26.
Article in English | MEDLINE | ID: mdl-32207864

ABSTRACT

Elastin-like polypeptides (ELPs) have been proposed as a simple model of intrinsically disordered proteins (IDPs) which can form membraneless organelles by liquid-liquid phase separation (LLPS) in cells. Herein, the behavior of fluorescently labeled ELP is studied in cytomimetic aqueous two-phase system (ATPS) encapsulated protocells that are formed using microfluidics, which enabled confinement, changes in temperature, and statistical analysis. The spatial organization of ELP could be observed in the ATPS. Furthermore, changes in temperature triggered the dynamic formation and distribution of ELP-rich droplets within the ATPS, resulting from changes in conformation. Proteins were encapsulated along with ELP in the synthetic protocells and distinct partitioning properties of these proteins and ELP in the ATPS were observed. Therefore, the ability of ELP to coacervate with temperature can be maintained inside a cell-mimicking system.


Subject(s)
Intrinsically Disordered Proteins/chemistry , Macromolecular Substances/chemistry , Organelles/chemistry , Polyethylene Glycols/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...