Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 10740, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32612100

ABSTRACT

Extracellular vesicles derived from mesenchymal stem cells (MSCs) represent a novel approach for regenerative and immunosuppressive therapy. Recently, cytochalasin B-induced microvesicles (CIMVs) were shown to be effective drug delivery mediators. However, little is known about their immunological properties. We propose that the immunophenotype and molecular composition of these vesicles could contribute to the therapeutic efficacy of CIMVs. To address this issue, CIMVs were generated from murine MSC (CIMVs-MSCs) and their cytokine content and surface marker expression determined. For the first time, we show that CIMVs-MSCs retain parental MSCs phenotype (Sca-1+, CD49e+, CD44+, CD45-). Also, CIMVs-MSCs contained a cytokine repertoire reflective of the parental MSCs, including IL-1ß, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12(p40), IL-13, IL-17, CCL2, CCL3, CCL4, CCL5, CCL11, G-CSF, GM-CSF and TNF-α. Next, we evaluated the immune-modulating properties of CIMVs-MSCs in vivo using standard preclinical tests. MSCs and CIMVs-MSCs reduced serum levels of anti-sheep red blood cell antibody and have limited effects on neutrophil and peritoneal macrophage activity. We compared the immunomodulatory effect of MSCs, CIMVs and EVs. We observed no immunosuppression in mice pretreated with natural EVs, whereas MSCs and CIMVs-MSCs suppressed antibody production in vivo. Additionally, we have investigated the biodistribution of CIMVs-MSCs in vivo and demonstrated that CIMVs-MSCs localized in liver, lung, brain, heart, spleen and kidneys 48 h after intravenous injection and can be detected 14 days after subcutaneous and intramuscular injection. Collectively our data demonstrates immunomodulatory efficacy of CIMVs and supports their further preclinical testing as an effective therapeutic delivery modality.


Subject(s)
Cell-Derived Microparticles/immunology , Cytochalasin B/pharmacology , Cytokines/immunology , Extracellular Vesicles/immunology , Immunosuppressive Agents/pharmacology , Macrophages, Peritoneal/immunology , Mesenchymal Stem Cells/immunology , Animals , Cell-Derived Microparticles/drug effects , Cells, Cultured , Extracellular Vesicles/drug effects , Macrophages, Peritoneal/cytology , Macrophages, Peritoneal/drug effects , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mice
2.
Stem Cells Int ; 2018: 4695275, 2018.
Article in English | MEDLINE | ID: mdl-29531538

ABSTRACT

Spinal cord injury (SCI) unavoidably results in death of not only neurons but also glial cells. In particular, the death of oligodendrocytes leads to impaired nerve impulse conduction in intact axons. However, after SCI, the Schwann cells (SCs) are capable of migrating towards an area of injury and participating in the formation of functional myelin. In addition to SCI, cell-based therapy can influence the migration of SCs and the expression of their molecular determinants. In a number of cases, it can be explained by the ability of implanted cells to secrete neurotrophic factors (NTFs). Genetically modified stem and progenitor cells overexpressing NTFs have recently attracted special attention of researchers and are most promising for the purposes of regenerative medicine. Therefore, we have studied the effect of genetically modified human umbilical cord blood mononuclear cells on the expression of SC molecular determinants in SCI.

3.
Neural Plast ; 2017: 9857918, 2017.
Article in English | MEDLINE | ID: mdl-28421147

ABSTRACT

In this study, we examined the efficacy of human umbilical cord blood mononuclear cells (hUCB-MCs), genetically modified with the VEGF and GDNF genes using adenoviral vectors, on posttraumatic regeneration after transplantation into the site of spinal cord injury (SCI) in rats. Thirty days after SCI, followed by transplantation of nontransduced hUCB-MCs, we observed an improvement in H (latency period, LP) and M(Amax) waves, compared to the group without therapy after SCI. For genetically modified hUCB-MCs, there was improvement in Amax of M wave and LP of both the M and H waves. The ratio between Amax of the H and M waves (Hmax/Mmax) demonstrated that transplantation into the area of SCI of genetically modified hUCB-MCs was more effective than nontransduced hUCB-MCs. Spared tissue and myelinated fibers were increased at day 30 after SCI and transplantation of hUCB-MCs in the lateral and ventral funiculi 2.5 mm from the lesion epicenter. Transplantation of hUCB-MCs genetically modified with the VEGF and GNDF genes significantly increased the number of spared myelinated fibers (22-fold, P > 0.01) in the main corticospinal tract compared to the nontransduced ones. HNA+ cells with the morphology of phagocytes and microglia-like cells were found as compact clusters or cell bridges within the traumatic cavities that were lined by GFAP+ host astrocytes. Our results show that hUCB-MCs transplanted into the site of SCI improved regeneration and that hUCB-MCs genetically modified with the VEGF and GNDF genes were more effective than nontransduced hUCB-MCs.


Subject(s)
Cell Transplantation/methods , Genetic Therapy/methods , Glial Cell Line-Derived Neurotrophic Factor/genetics , Leukocytes, Mononuclear/transplantation , Spinal Cord Injuries/therapy , Vascular Endothelial Growth Factor A/genetics , Adenoviridae , Animals , Cell Differentiation , Female , Fetal Blood/cytology , Gene Transfer Techniques , Genetic Vectors , Humans , Leukocytes, Mononuclear/pathology , Leukocytes, Mononuclear/physiology , Leukocytes, Mononuclear/ultrastructure , Male , Rats , Rats, Wistar , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology , Transplantation, Heterologous
4.
Spinal Cord ; 54(6): 423-30, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26439843

ABSTRACT

STUDY DESIGN: Experimental study. OBJECTIVE: Several neuro-degenerative disorders such as Alzheimer's dementia, Parkinson's disease and amyotrophic lateral sclerosis (ALS) are associated with genetic mutations, and replacing or disrupting defective sequences might offer therapeutic benefits. Single gene delivery has so far failed to achieve significant clinical improvements in humans, leading to the advent of co-expression of multiple therapeutic genes. Co-transfection using two or more individual constructs might inadvertently result in disproportionate delivery of the products into the cells. To prevent this, and in order to rule out interference among the many promoters with varying strength, expressing multiple proteins in equimolar amounts can be achieved by linking open reading frames under the control of only one promoter. SETTING: Kazan, Russian Federation. METHODS: Here we describe a strategy for adeno-viral co-expression of vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2) interconnected through picorna-viral 2A-amino-acid sequence in transfected human umbilical cord blood mono-nuclear cells (hUCB-MCs). RESULTS: Presence of both growth factors, as well as absence of immune response to 2A-antigen, was demonstrated after 28-52 days. Following injection of hUCB-MCs into ALS transgenic mice, co-expression of VEGF and FGF2, as well as viable xeno-transplanted cells, were observed in the spinal cord after 1 month. CONCLUSION: These results suggest that recombinant adeno-virus containing 2A-sequences could serve as a promising alternative in regenerative medicine for the delivery of therapeutic molecules to treat neurodegenerative diseases, such as ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/therapy , Blood Cells/metabolism , Blood Cells/transplantation , Cysteine Endopeptidases/metabolism , Fibroblast Growth Factor 2/metabolism , Vascular Endothelial Growth Factor A/metabolism , Viral Proteins/metabolism , Adenoviridae/genetics , Amyotrophic Lateral Sclerosis/genetics , Animals , Cysteine Endopeptidases/genetics , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Fetal Blood/cytology , Fibroblast Growth Factor 2/genetics , Genetic Vectors/physiology , HEK293 Cells , Humans , Male , Mice , Mice, Transgenic , Mutation/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Superoxide Dismutase-1/genetics , Transfection , Vascular Endothelial Growth Factor A/genetics , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...