Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 15(13): 3230-42, 2009.
Article in English | MEDLINE | ID: mdl-19206116

ABSTRACT

Traffic control: By exploiting the interplay of kinetic and thermodynamic effects, the direction of threading/dethreading in a nonsymmetric calixarene wheel can be selected by an appropriate choice of the head group incorporated in the molecular axle (see figure).The possibility of obtaining full control on the direction of axle threading in calix[6]arene wheel 1 either from its upper or lower rim was evaluated in solution. To this aim, we prepared nonsymmetric axles characterised by a 4,4'-bipyridinium recognition unit with two alkyl side chains, one of which terminates with a stopper, and the other with either ammonium (2), hydroxy (3) or methyl (4 and 5) head groups. When the axles were mixed with 1 in apolar solvents at room temperature, the formation of oriented pseudorotaxanes derived from the threading of the axles from the upper rim was observed. The stability constants of such complexes are in the order of 10(7) m(-1) and are almost independent of the type of axle. A detailed thermodynamic and kinetic study revealed that stability constants and activation parameters for complex formation between 1 and axles 2 and 3 are of the same order of magnitude, suggesting a common threading process. However, upon heating a solution of 1 and 2 in benzene at 340 K, the formation of another supramolecular complex was observed, the structure of which is consistent with an oriented pseudorotaxane derived from the threading of axle 2 from the lower rim of the calixarene wheel. By carrying out the threading-stoppering reaction sequence between 1 and 2 in the presence of an excess of diphenylacetyl chloride, the orientational rotaxane isomers R1 and R2, derived from lower- and upper-rim threading, respectively, were collected in about a ratio of 7:3 as the unique chromatographic fraction. Our results suggest that at room temperature the threading process is under kinetic control for all axles. On increasing the temperature only the threading behaviour of axle 2 is substantially modified, most likely because the process becomes thermodynamically controlled owing to the peculiar recognition properties of the ammonium head of this axle.

2.
Chemphyschem ; 6(10): 2145-52, 2005 Oct 14.
Article in English | MEDLINE | ID: mdl-16208757

ABSTRACT

Molecular shuttles are an intriguing class of rotaxanes which constitute prototypes of mechanical molecular machines and motors. By using stopped-flow spectroscopic techniques in acetonitrile solution, we investigated the kinetics of the shuttling process of a dibenzo[24]crown-8 ether (DB24C8) macrocycle between two recognition sites or "stations"--a secondary ammonium (-NH2+-)/amine (-NH-) center and a 4,4'-bipyridinium (bipy2+) unit--located on the dumbbell component in a [2]rotaxane. The affinity for DB24C8 decreases in the order -NH2+- > bipy2+ > -NH-. Hence, shuttling of the DB24C8 macrocycle can be obtained by deprotonation and reprotonation of the ammonium station, reactions which are easily accomplished by addition of base and acid to the solution. The rate constants were measured as a function of temperature in the range 277-303 K, and activation parameters for the shuttling motion in both directions were determined. The effect of different counterions on the shuttling rates was examined. The shuttling from the -NH2+- to the bipy2+ station, induced by the deprotonation of the ammonium site, is considerably slower than the shuttling in the reverse direction, which is, in turn, activated by reprotonation of the amine site. The results show that the dynamics of the shuttling processes are related to the change in the intercomponent interactions and structural features of the two mutually interlocked molecular components. Our observations also indicate that the counterions of the cationic rotaxane constitute an important contribution to the activation barrier for shuttling.

3.
Chem Commun (Camb) ; (9): 944-5, 2002 May 07.
Article in English | MEDLINE | ID: mdl-12123060

ABSTRACT

A fruitful combination of potentiometry, absorption spectrophotometry, ESMS and 1H NMR enabled the characterisation of two caesium complexes with norbadione A and the determination of the respective stability constants of a mononuclear and a dinuclear caesium complex at pH approximately 6; a preliminary study allowed the assignment of five protonation sites of this pigment; a positively cooperative binding of the second Cs+ cation was observed.


Subject(s)
4-Butyrolactone/chemistry , Agaricales/metabolism , Phenylacetates/chemistry , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/pharmacokinetics , Cesium Radioisotopes/pharmacokinetics , Kinetics , Magnetic Resonance Spectroscopy , Mass Spectrometry , Phenylacetates/pharmacokinetics , Potentiometry
SELECTION OF CITATIONS
SEARCH DETAIL
...