Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Biomed Res Int ; 2017: 7212985, 2017.
Article in English | MEDLINE | ID: mdl-28337456

ABSTRACT

Previous studies showed the presence of Mycoplasma pneumoniae (M. pneumoniae) and membrane-shed microparticles (MPs) in vulnerable atherosclerotic plaques. H&S Science and Biotechnology developed PTCTS, composed by natural particles from medicinal plants (PTC) combined with trans-Sialidase (TS), to combat MPs and Mycoplasma pneumoniae. Our aim was to determine the effects of the different components of PTCTS in a rabbit model of atherosclerosis. Rabbits were fed with high cholesterol diet for 12 weeks and treated during the last 6 weeks with either vehicle, PTC, TS, or PTCTS. Lipid profile and quantification of MPs positive for Mycoplasma pneumoniae and oxidized LDL antigens were carried out. Aortas and organs were then histologically analyzed. PTCTS reduced circulating MPs positive for Mycoplasma pneumoniae and oxidized LDL antigens, reduced the plaque area in the abdominal aorta, and caused positive remodeling of the ascendant aorta. PTC caused positive remodeling and reduced plaque area in the abdominal aorta; however, TS had a lipid lowering effect. PTCTS components combined were more effective against atherosclerosis than individual components. Our data reinforce the infectious theory of atherosclerosis and underscore the potential role of circulating MPs. Therefore, the removal of Mycoplasma-derived MPs could be a new therapeutic approach in the treatment of atherosclerosis.


Subject(s)
Atherosclerosis/drug therapy , Glycoproteins/administration & dosage , Mycoplasma pneumoniae/drug effects , Neuraminidase/administration & dosage , Plaque, Atherosclerotic/drug therapy , Animals , Aorta, Abdominal/drug effects , Aorta, Abdominal/pathology , Atherosclerosis/metabolism , Atherosclerosis/microbiology , Atherosclerosis/pathology , Biological Products/administration & dosage , Biological Products/chemistry , Cholesterol, Dietary/pharmacology , Diet, High-Fat/adverse effects , Disease Models, Animal , Glycoproteins/chemistry , Humans , Lipoproteins, LDL/metabolism , Male , Mycoplasma pneumoniae/pathogenicity , Neuraminidase/chemistry , Plants, Medicinal/chemistry , Plaque, Atherosclerotic/microbiology , Plaque, Atherosclerotic/pathology , Rabbits
2.
Clinics (Sao Paulo) ; 71(3): 163-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27074178

ABSTRACT

OBJECTIVE: Exercise is a protective factor for cardiovascular morbidity and mortality, with unclear mechanisms. Changing the myocardial metabolism causes harmful consequences for heart function and exercise contributes to metabolic adjustment modulation. Peroxisome proliferator-activated receptors (PPARs) are also myocardium metabolism regulators capable of decreasing the inflammatory response. We hypothesized that PPAR-α is involved in the beneficial effects of previous exercise on myocardial infarction (MI) and cardiac function, changing the expression of metabolic and inflammatory response regulators and reducing myocardial apoptosis, which partially explains the better outcome. METHODS AND RESULTS: Exercised rats engaged in swimming sessions for 60 min/day, 5 days/week, for 8 weeks. Both the exercised rats and sedentary rats were randomized to MI surgery and followed for 1 week (EI1 or SI1) or 4 weeks (EI4 or SI4) of healing or to sham groups. Echocardiography was employed to detect left ventricular function and the infarct size. Additionally, the TUNEL technique was used to assess apoptosis and immunohistochemistry was used to quantitatively analyze the PPAR-α, TNF-α and NF-κB antigens in the infarcted and non-infarcted myocardium. MI-related mortality was higher in SI4 than in EI4 (25% vs 12%), without a difference in MI size. SI4 exhibited a lower shortening fraction than EI4 did (24% vs 35%) and a higher apoptosis/area rate (3.97±0.61 vs 1.90±1.82) in infarcted areas (both p=0.001). Immunohistochemistry also revealed higher TNF-α levels in SI1 than in EI1 (9.59 vs 4.09, p<0.001) in infarcted areas. In non-infarcted areas, EI4 showed higher levels of TNF-α and positive correlations between PPAR-α and NF-κB (r=0.75, p=0.02), in contrast to SI4 (r=0.05, p=0.87). CONCLUSION: Previously exercised animals had better long-term ventricular function post-MI, in addition to lower levels of local inflammatory markers and less myocardial apoptosis, which seemed to be related to the presence of PPAR-α.


Subject(s)
Myocardial Infarction/metabolism , PPAR alpha/metabolism , Physical Conditioning, Animal/physiology , Animals , Apoptosis/physiology , Female , Inflammation/metabolism , Models, Animal , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/pathology , NF-kappa B/metabolism , PPAR alpha/analysis , Random Allocation , Rats, Wistar , Time , Tumor Necrosis Factor-alpha/metabolism , Ultrasonography , Ventricular Function/physiology
3.
Clinics ; 71(3): 163-168, Mar. 2016. tab, graf
Article in English | LILACS | ID: lil-778995

ABSTRACT

OBJECTIVE: Exercise is a protective factor for cardiovascular morbidity and mortality, with unclear mechanisms. Changing the myocardial metabolism causes harmful consequences for heart function and exercise contributes to metabolic adjustment modulation. Peroxisome proliferator-activated receptors (PPARs) are also myocardium metabolism regulators capable of decreasing the inflammatory response. We hypothesized that PPAR-α is involved in the beneficial effects of previous exercise on myocardial infarction (MI) and cardiac function, changing the expression of metabolic and inflammatory response regulators and reducing myocardial apoptosis, which partially explains the better outcome. METHODS AND RESULTS: Exercised rats engaged in swimming sessions for 60 min/day, 5 days/week, for 8 weeks. Both the exercised rats and sedentary rats were randomized to MI surgery and followed for 1 week (EI1 or SI1) or 4 weeks (EI4 or SI4) of healing or to sham groups. Echocardiography was employed to detect left ventricular function and the infarct size. Additionally, the TUNEL technique was used to assess apoptosis and immunohistochemistry was used to quantitatively analyze the PPAR-α, TNF-α and NF-κB antigens in the infarcted and non-infarcted myocardium. MI-related mortality was higher in SI4 than in EI4 (25% vs 12%), without a difference in MI size. SI4 exhibited a lower shortening fraction than EI4 did (24% vs 35%) and a higher apoptosis/area rate (3.97±0.61 vs 1.90±1.82) in infarcted areas (both p=0.001). Immunohistochemistry also revealed higher TNF-α levels in SI1 than in EI1 (9.59 vs 4.09, p<0.001) in infarcted areas. In non-infarcted areas, EI4 showed higher levels of TNF-α and positive correlations between PPAR-α and NF-κB (r=0.75, p=0.02), in contrast to SI4 (r=0.05, p=0.87). CONCLUSION: Previously exercised animals had better long-term ventricular function post-MI, in addition to lower levels of local inflammatory markers and less myocardial apoptosis, which seemed to be related to the presence of PPAR-α.


Subject(s)
Animals , Female , Myocardial Infarction/metabolism , PPAR alpha/metabolism , Physical Conditioning, Animal/physiology , Apoptosis/physiology , Inflammation/metabolism , Models, Animal , Myocardial Infarction/pathology , Myocardial Infarction , NF-kappa B/metabolism , PPAR alpha/analysis , Random Allocation , Rats, Wistar , Time , Tumor Necrosis Factor-alpha/metabolism , Ventricular Function/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...