Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 14(13)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38997970

ABSTRACT

The objectives of this review are to identify the nutritional challenges faced by modern sows and present potential solutions to mitigate excessive maternal tissue loss and reproductive failure as it relates to recent genetic improvements. Current feeding programs have limitations to support the rapid genetic improvements in reproductive performance for modern sows. Since 2012, both litter size at birth and fetal weight have increased by 2.26 pigs per litter and 0.22 kg per piglet, respectively, thereby increasing the nutrient needs for sows during gestation and lactation. Prediction models generated in this review predict that modern sows would need 31% more lysine during gestation when compared with current feeding programs. Physiological challenges facing modern sows are also addressed in this review. High oxidative stress, pelvic organ prolapse, and lameness can directly affect the sow, whereas these physiological challenges can have negative impacts on colostrum and milk quality. In response, there is growing interest in investigating the functional roles of select bioactive compounds as feed additives to mitigate the severity of these challenges. Selenium sources, catechins, and select plant extracts have been utilized to reduce oxidative stress, calcium chloride and phytase have been used to mitigate pelvic organ prolapse and lameness, algae and yeast derivatives have been used to improve colostrum and milk quality, and fiber sources and probiotics have been commonly utilized to improve sow intestinal health. Collectively, this review demonstrates the unique challenges associated with managing the feeding programs for modern sows and the opportunities for revision of the amino acid requirements as well as the use of select bioactive compounds to improve reproductive performance.

2.
Transl Anim Sci ; 8: txad149, 2024.
Article in English | MEDLINE | ID: mdl-38390272

ABSTRACT

In nursery diets, ingredients with high protein content and highly digestible nutrients, such as corn-fermented protein product with added yeast mass (GDDY), can be included as an alternative to common protein sources. This study investigated the dietary inclusion of GDDY as an alternative protein source on growth performance and intestinal health of weaned pigs. A total of 594 weaned pigs (5.7 ±â€…0.9 kg; 18.5 days of age) were allotted to 36 pens in a randomized incomplete block design. Pens were assigned to one of 4 dietary treatments: CON: a common nursery feeding program; SBM75: CON diet replacing 75% of soybean meal (SBM) with GDDY; FM/ESBM: CON diet without fish meal (FM) and enzyme-treated SBM (ESBM) + GDDY; GDDY50: CON diet replacing 50% of SBM, FM, and ESBM with GDDY. Experimental diets were formulated to meet nutrient requirements of nursery pigs and provided in meal form through four phases during the nursery period. Pig growth performance was assessed on days 7, 14, 21, 28, 42, and 53. Pen fecal score was assessed daily from days 0 to 14, and 3 times per week from days 15 to 35. Intestinal health was assessed based on plasma immunoglobulin A (IgA) concentration and the differential sugar absorption test. The total tract digestibility of dry matter (DM), crude protein (CP), gross energy (GE), and phosphorus was also evaluated. From days 0 to 7 and days 7 to 14, dietary treatment had no effect (P > 0.05) on BW, ADG, and ADFI. For the rest of the experimental period, ADG and ADFI were greater (P < 0.05) in pigs fed CON in comparison with those fed SBM75 and GDDY50 and did not differ from pigs fed FM/ESBM. Pigs fed GDDY50 tended (P = 0.082) to have greater serum IgA concentration on day 20 when compared with SBM75 and FM/ESBM pigs. There were no differences among dietary treatments for DM, CP, and GE digestibility. Phosphorus digestibility was higher in FM/ESBM (P < 0.05) compared with SBM75 and GDDY50. These results supported the hypothesis that GDDY can be incorporated in nursery pig diets during the first couple weeks after weaning without affecting growth performance. However, in the late nursery period, inclusion levels starting at 14% can compromise performance.

3.
Animals (Basel) ; 13(17)2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37685055

ABSTRACT

This review focused on the impact of F18+E. coli on pig production and explored nutritional interventions to mitigate its deleterious effects. F18+E. coli is a primary cause of PWD in nursery pigs, resulting in substantial economic losses through diminished feed efficiency, morbidity, and mortality. In summary, the F18+E. coli induces intestinal inflammation with elevated IL6 (60%), IL8 (43%), and TNF-α (28%), disrupting the microbiota and resulting in 14% villus height reduction. Besides the mortality, the compromised intestinal health results in a 20% G:F decrease and a 10% ADFI reduction, ultimately culminating in a 28% ADG decrease. Among nutritional interventions to counter F18+E. coli impacts, zinc glycinate lowered TNF-α (26%) and protein carbonyl (45%) in jejunal mucosa, resulting in a 39% ADG increase. Lactic acid bacteria reduced TNF-α (36%), increasing 51% ADG, whereas Bacillus spp. reduced IL6 (27%), increasing BW (12%). Lactobacillus postbiotic increased BW (14%) and the diversity of beneficial bacteria. Phytobiotics reduced TNF-α (23%) and IL6 (21%), enhancing feed efficiency (37%). Additional interventions, including low crude protein formulation, antibacterial minerals, prebiotics, and organic acids, can be effectively used to combat F18+E. coli infection. These findings collectively underscore a range of effective strategies for managing the challenges posed by F18+E. coli in pig production.

4.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37119202

ABSTRACT

Two experiments were conducted to test the hypothesis that two high protein dried distillers with solubles and yeast mass added (GDDY) products fed to growing pigs had comparable amino acid (AA) digestibility and metabolizable energy (ME) to feeds commonly used in swine diets. In experiment 1, seven barrows with an initial body weight (BW) of 25 ±â€…0.8 kg were fitted with a simple T-cannula at the distal ileum to allow for digesta collection. Experimental diets were N-free diets and six cornstarch-based diets containing six ingredients as the sole source of AA: spray dried GDDY, ring dried GDDY, corn distillers dried grains with solubles (DDGS), soybean meal (SBM), enzymatically treated soybean meal (ESBM), and fish meal (FM) provided at 4% of BW. The experiment was conducted as a 7 × 7 Latin square design with seven collection periods of 7 d (5 d adaptation and 2 d ileal digesta collection). In experiment 2, a total of 28 barrows (28.8 ±â€…1.4 kg BW) were used in a two-period switch-back design with seven diets and four replicate pigs in each period (n = 8 reps per diet). Experimental diets were a corn-based basal diet and six corn-based diets containing spray dried GDDY, ring dried GDDY, DDGS, SBM, ESBM, and FM. Fecal and urine samples were collected using the marker-to-marker approach for 5 d after 7 d of adaptation to determine ME concentration. Overall, standardized ileal digestibility (SID) values were within the mean ±â€…SD of NRC (2012) values for all ingredients evaluated. The SID of AA was greater (P < 0.05) in ESBM than the other protein feedstuffs (90.09% vs. 78.71%-81.51%). There were no significant differences in SID of AA (P > 0.05) in SBM, FM, spray dried GDDY, and ring dried GDDY (81.49%, 78.71%, 81.52%, and 79.20%). With respect to the most common first limiting AA for swine, the SID of Lys was greater (P < 0.05) in spray dried GDDY than ring dried GDDY and DDGS (83.56% vs. 77.33% and 68.53%, respectively). There were no significant differences (P > 0.05) for ME in corn (3,313 kcal/kg), ESBM (3,323 kcal/kg), and FM (3,454 kcal/kg) when compared with spray dried GDDY and ring dried GDDY (3,995 and 3,442 kcal/kg respectively). However, spray dried GDDY had greater DE and ME when compared to SBM. Collectively, this study demonstrates that GDDY products have an AA profile and digestibility comparable to SBM; ME in GDDY products is not different from corn. Therefore, GDDY has the potential as a feed ingredient for pigs, which could provide an alternative source of protein and energy in swine diets.


Co-products such as distiller's dried grains with solubles (DDGS) from the ethanol industry are obtained through fermentation processes and removal of nonfermentable components; separation of soluble fiber and protein components can potentially increase their nutritional value in swine diets. With the development of new feed processing technologies, high protein DDGS with added yeast mass (GDDY) has been obtained by separating the protein fraction of DDGS. However, there is limited information on the nutritional value of these co-products for pigs. The first step in determining the suitability of novel co-product use in swine diets is to define the nutritional value. Therefore, the nutritional value of GDDY was determined by analyzing standardized ileal digestibility (SID) of amino acids (AA) and metabolizable energy (ME) in growing pigs compared with common protein and energy feeds used in growing pig diets. The results show that the AA profile and digestibility in GDDY products were not different from soybean meal (SBM) as is the case for lysine, the first limiting AA in pig diets. Similarly, ME concentration in GDDY does not differ from those in other energy sources. Therefore, GDDY could be an alternative source of protein and energy in swine diets, and the obtained data allow its inclusion in pig diets formulation.


Subject(s)
Digestion , Ileum , Swine , Animals , Ileum/metabolism , Animal Feed/analysis , Diet/veterinary , Amino Acids/metabolism , Nutritive Value , Glycine max/chemistry , Zea mays/chemistry , Animal Nutritional Physiological Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...