Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Steroid Biochem Mol Biol ; 238: 106461, 2024 04.
Article in English | MEDLINE | ID: mdl-38219844

ABSTRACT

There is growing evidence indicating that mineralocorticoid receptor (MR) expression influences a wide variety of functions in metabolic and immune response. The present study explored if antagonism of the MR reduces neuroinflammation in the spinal cord of mice with experimental autoimmune encephalomyelitis (EAE). Eplerenone (EPLE) (100 mg/kg dissolved in 30% 2-hydroxypropyl-ß-cyclodextrin) was administered intraperitoneally (i.p.) daily from EAE induction (day 0) until sacrificed on day 17 post-induction. The MR blocker (a) significantly decreased the inflammatory parameters TLR4, MYD88, IL-1ß, and iNOS mRNAs; (b) attenuated HMGB1, NLRP3, TGF-ß mRNAs, microglia, and aquaporin4 immunoreaction without modifying GFAP. Serum IL-1ß was also decreased in the EAE+EPLE group. Moreover, EPLE treatment prevented demyelination and improved clinical signs of EAE mice. Interestingly, MR was decreased and GR remained unchanged in EAE mice while EPLE treatment restored MR expression, suggesting that a dysbalanced MR/GR was associated with the development of neuroinflammation. Our results indicated that MR blockage with EPLE attenuated inflammation-related spinal cord pathology in the EAE mouse model of Multiple Sclerosis, supporting a novel therapeutic approach for immune-related diseases.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Mice , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Eplerenone/pharmacology , Eplerenone/therapeutic use , Mineralocorticoid Receptor Antagonists/pharmacology , Mineralocorticoid Receptor Antagonists/therapeutic use , Neuroinflammatory Diseases , Spinal Cord/pathology , Mice, Inbred C57BL
2.
Muscle Nerve ; 68(4): 414-421, 2023 10.
Article in English | MEDLINE | ID: mdl-37493444

ABSTRACT

INTRODUCTION/AIMS: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a higher incidence in men suggesting an influence of sex steroids. Our objective was to investigate past exposure to endogenous and synthetic steroids in female ALS patients and controls. METHODS: We administered a questionnaire to 158 postmenopausal women (75 ALS patients and 83 controls). We calculated reproductive time span (RTS), lifetime endogenous estrogen (LEE) and progesterone exposures (LPE), oral contraceptive pill (OCP) use, and reproductive history. RESULTS: ALS patients showed shorter LEE and LPE, a lower proportion of breast cancer, and 11% showed no history of pregnancies vs. 4% of controls. Odds ratios (ORs) showed that <17 y of LEE and a delayed menarche (>13 y) constitute risk factors for ALS [OR = 2.1 (95% confidence interval {CI}, 1.08-4.2); and OR = 2.4 (95% CI, 1.1-5.1) respectively]. According to Cox survival analysis, for each year the LEE increased over 17 y, it was independently associated with longer survival [hazard ratio (HR) = 0.37 (95% CI, 0.16-0.85)] after adjusting for smoking, age and site of onset. Multivariate regression analysis demonstrated that for each month using OCP for longer than 40 mo increased the risk of ALS [adjusted OR = 4.1 (95% CI, 1.2-13.8)]. DISCUSSION: Thus, longer exposure to endogenous female sex steroids increased survival and reduced ALS susceptibility. In contrast, longer exposure to synthetic sex steroids showed a negative impact by reducing the production of endogenous female sex steroids or due to crossover with other steroid receptors. Given the neuroprotective effects of sex steroids, we suggest that abnormalities of neuroendocrine components may alter motor function in women with ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Male , Humans , Female , Reproductive History , Neurodegenerative Diseases/complications , Gonadal Steroid Hormones , Prognosis , Risk Factors , Steroids
3.
J Neuroendocrinol ; 34(1): e13078, 2022 01.
Article in English | MEDLINE | ID: mdl-34961984

ABSTRACT

Multiple sclerosis (MS) is an immune-mediated and degenerating disease in which myelin sheaths are damaged as a result of chronic progressive inflammation of the central nervous system. Tibolone [(7α,17α)-17-hydroxy-7-methyl-19-norpregn-5(10)-en-20-in-3-one], a synthetic estrogenic compound with tissue-specific actions and used for menopausal hormone therapy, shows neuroprotective and antioxidant properties both in vivo and in vitro. In the present study, we analyzed whether tibolone plays a therapeutic role in experimental autoimmune encephalomyelitis (EAE) mice, a commonly used model of MS. Female C57BL/6 mice were induced with the myelin oligodendrocyte glycoprotein MOG35-55 and received s.c. tibolone (0.08 mg kg-1 ) injection every other day from the day of induction until death on the acute phase of the disease. Reactive gliosis, Toll like receptor 4 (TLR4), high mobility group box protein 1 (HMGB1), inflammasome parameters, activated Akt levels and myelin were assessed by a real-time polymerase chain reaction, immunohistochemistry, and western blot analysis. Our findings indicated that, in the EAE spinal cord, tibolone reversed the astrocytic and microglial reaction, and reduced the hyperexpression of TLR4 and HMGB1, as well as NLR family pyrin domain containing 3-caspase 1-interleukin-1ß inflammasome activation. At the same time, tibolone attenuated the Akt/nuclear factor kappa B pathway and limited the white matter demyelination area. Estrogen receptor expression was unaltered with tibolone treatment. Clinically, tibolone improved neurological symptoms without uterine compromise. Overall, our data suggest that tibolone may serve as a promising agent for the attenuation of MS-related inflammation.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/drug therapy , Neuritis/prevention & control , Norpregnenes/therapeutic use , Animals , Disease Models, Animal , Disease Progression , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Inflammation/pathology , Inflammation/prevention & control , Mice , Mice, Inbred C57BL , Neuritis/pathology , Neuroprotective Agents/therapeutic use , Remission Induction
4.
J Steroid Biochem Mol Biol ; 207: 105820, 2021 03.
Article in English | MEDLINE | ID: mdl-33465418

ABSTRACT

Progesterone is involved in dendritogenesis, synaptogenesis and maturation of cerebellar Purkinge cells, major sites of steroid synthesis in the brain. To study a possible time-relationship between myelination, neurosteroidogenesis and steroid receptors during development of the postnatal mouse cerebellum, we determined at postnatal days 5 (P5),18 (P18) and 35 (P35) the expression of myelin basic protein (MBP), components of the steroidogenic pathway, levels of endogenous steroids and progesterone's classical and non-classical receptors. In parallel with myelin increased expression during development, P18 and P35 mice showed higher levels of cerebellar progesterone and its reduced derivatives, higher expression of steroidogenic acute regulatory protein (StAR) mRNA, cholesterol side chain cleavage enzyme (P450scc) and 5α-reductase mRNA vs. P5 mice. Other steroids such as corticosterone and its reduced derivatives and 3ß-androstanodiol (ADIOL) showed a peak increase at P18 compared to P5. Progesterone membrane receptors and binding proteins (PGRMC1, mPRα, mPRß, mPRγ, and Sigma1 receptors) mRNAs levels increased during development while that of classical progesterone receptors (PR) remained invariable. PRKO mice showed similar MBP levels than wild type. Thus, these data suggests that progesterone and its neuroactive metabolites may play a role in postnatal cerebellar myelination.


Subject(s)
Cerebellum/metabolism , Myelin Basic Protein/genetics , Phosphoproteins/genetics , Progesterone/genetics , Animals , Cerebellum/growth & development , Gene Expression Regulation, Developmental , Mice , Progesterone/biosynthesis , Protein Binding/genetics , RNA, Messenger/genetics
5.
J Neuroendocrinol ; 30(11): e12649, 2018 11.
Article in English | MEDLINE | ID: mdl-30303567

ABSTRACT

Changes of neurosteroids may be involved in the pathophysiology of multiple sclerosis (MS). The present study investigated whether changes of neurosteroidogenesis also occurred in the grey and white matter regions of the brain in mice subjected to cuprizone-induced demyelination. Accordingly, we compared the expression of neurosteroidogenic proteins, including steroidogenic acute regulatory protein (StAR), voltage-dependent anion channel (VDAC) and 18 kDa translocator protein (TSPO), as well as neurosteroidogenic enzymes, including the side chain cleavage enzyme (P450scc), 3ß-hydroxysteroid dehydrogenase/isomerase and 5α-reductase (5α-R), during the demyelination and remyelination periods. Using immunohistochemistry and a quantitative polymerase chain reaction, we demonstrated a decreased expression of StAR, P450scc and 5α-R with respect to an increase astrocytic and microglial reaction and elevated levels of tumor necrosis factor (TNF)α during the cuprizone demyelination period in the hippocampus, cortex and corpus callosum. These parameters, as well as the glial reaction, were normalised after 2 weeks of spontaneous remyelination in regions containing grey matter. Conversely, persistent elevated levels of TNFα and low levels of StAR and P450scc were observed during remyelination in corpus callosum white matter. We conclude that neurosteroidogenesis/myelination status and glial reactivity are inversely related in the hippocampus and neocortex. Establishing a cause and effect relationship for the measured variables remains a future challenge for understanding the pathophysiology of MS.


Subject(s)
Brain/enzymology , Brain/metabolism , Myelin Sheath/enzymology , Myelin Sheath/metabolism , Remyelination , 3-Hydroxysteroid Dehydrogenases/metabolism , Animals , Brain/drug effects , Cholestenone 5 alpha-Reductase/metabolism , Cuprizone/administration & dosage , Cytochrome P-450 Enzyme System/metabolism , Disease Models, Animal , Female , Mice, Inbred C57BL , Multiple Sclerosis/chemically induced , Multiple Sclerosis/enzymology , Multiple Sclerosis/metabolism , Myelin Sheath/drug effects , Neuroglia/drug effects , Neuroglia/enzymology , Neuroglia/metabolism , Phosphoproteins/metabolism , Receptors, GABA/metabolism , Remyelination/drug effects , Voltage-Dependent Anion Channel 1/metabolism
6.
J Steroid Biochem Mol Biol ; 174: 201-216, 2017 11.
Article in English | MEDLINE | ID: mdl-28951257

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a devastating disorder characterized by progressive death of motoneurons. The Wobbler (WR) mouse is a preclinical model sharing neuropathological similarities with human ALS. We have shown that progesterone (PROG) prevents the progression of motoneuron degeneration. We now studied if allopregnanolone (ALLO), a reduced metabolite of PROG endowed with gabaergic activity, also prevents WR neuropathology. Sixty-day old WRs remained untreated or received two steroid treatment regimens in order to evaluate the response of several parameters during early or prolonged steroid administration. ALLO was administered s.c. daily for 5days (4mg/kg) or every other day for 32days (3, 3mg/kg), while another group of WRs received a 20mg PROG pellet s.c. for 18 or 60days. ALLO administration to WRs increased ALLO serum levels without changing PROG and 5 alpha dihydroprogesterone (5α-DHP), whereas PROG treatment increased PROG, 5α-DHP and ALLO. Untreated WRs showed higher basal levels of serum 5α-DHP than controls. In the cervical spinal cord we studied markers of oxidative stress or associated to trophic responses. These included nitric oxide synthase (NOS) activity, motoneuron vacuolation, MnSOD immunoreactivity (IR), brain derived neurotrophic factor (BDNF) and TrkB mRNAs, p75 neurotrophin receptor (p75NTR) and, cell survival or death signals such as pAKT and the stress activated kinase JNK. Untreated WRs showed a reduction of MnSOD-IR and BDNF/TrkB mRNAs, associated to high p75NTR in motoneurons, neuronal and glial NOS hyperactivity and neuronal vacuolation. Also, low pAKT, mainly in young WRs, and a high pJNK in the old stage characterized WRs spinal cord. Except for MnSOD and BDNF, these alterations were prevented by an acute ALLO treatment, while short-term PROG elevated MnSOD. Moreover, after chronic administration both steroids enhanced MnSOD-IR and BDNF mRNA, while attenuated pJNK and NOS in glial cells. Long-term PROG also increased pAKT and reduced neuronal NOS, parameters not modulated by chronic ALLO. Clinically, both steroids improved muscle performance. Thus, ALLO was able to reduce neuropathology in this model. Since high oxidative stress activates p75NTR and pJNK in neurodegeneration, steroid reduction of these molecules may provide adequate neuroprotection. These data yield the first evidence that ALLO, a gabaergic neuroactive steroid, brings neuroprotection in a model of motoneuron degeneration.


Subject(s)
Nerve Degeneration/drug therapy , Neuroprotective Agents/therapeutic use , Pregnanolone/therapeutic use , Amyotrophic Lateral Sclerosis , Animals , Brain-Derived Neurotrophic Factor/genetics , Choline O-Acetyltransferase/metabolism , Disease Models, Animal , Female , Male , Mice , Motor Neurons/drug effects , Motor Neurons/pathology , Nerve Degeneration/genetics , Nerve Degeneration/metabolism , Neuroprotective Agents/blood , Neuroprotective Agents/pharmacology , Nitric Oxide Synthase/metabolism , Pregnanolone/blood , Pregnanolone/pharmacology , Progesterone/blood , Progesterone/pharmacology , Progesterone/therapeutic use , Receptor, trkB/genetics , Receptors, Nerve Growth Factor/metabolism , Spinal Cord/metabolism , Spinal Cord/pathology , Superoxide Dismutase/metabolism
7.
CNS Neurol Disord Drug Targets ; 12(8): 1205-18, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24040821

ABSTRACT

Substantial evidence supports that progesterone exerts many functions in the central and peripheral nervous system unrelated to its classical role in reproduction. In this review we first discussed progesterone effects following binding to the classical intracellular progesterone receptors A and B and several forms of membrane progesterone receptors, the modulation of intracellular signalling cascades and the interaction of progesterone reduced metabolites with neurotransmitter receptors. We next described our results involving animal models of human neuropathologies to elucidate the protective roles of progesterone. We described: (a) the protective and promyelinating effects of progesterone in experimental spinal cord injury; (b) the progesterone protective effects exerted upon motoneurons in the degenerating spinal cord of Wobbler mouse model of amyotropic lateral sclerosis; (c) the protective and anti-inflammatory effects of progesterone in the murine experimental autoimmune encephalomyelitis model of multiple sclerosis and after lysolecithin demyelination; (d) the progesterone prevention of nociception and neuropathic pain which follow spinal cord injury; and (e) the protective effect of progesterone in experimental ischemic stroke. Whenever available, the molecular mechanisms involved in these progesterone effects were examined. The multiplicity of progesterone beneficial effects has opened new venues of research for neurological disorders. In this way, results obtained in animal models could provide the basis for novel therapeutic strategies and pre-clinical studies.


Subject(s)
Disease Models, Animal , Nervous System Diseases/drug therapy , Neuroprotective Agents/therapeutic use , Progesterone/therapeutic use , Animals , Humans , Nervous System Diseases/metabolism , Nervous System Diseases/pathology , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Treatment Outcome
8.
Cell Mol Neurobiol ; 30(1): 123-35, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19693665

ABSTRACT

In the Wobbler mouse, a mutation in the Vps54 gene is accompanied by motoneuron degeneration and astrogliosis in the cervical spinal cord. Previous work has shown that these abnormalities are greatly attenuated by progesterone treatment of clinically afflicted Wobblers. However, whether progesterone is effective at all disease stages has not yet been tested. The present work used genotyped (wr/wr) Wobbler mice at three periods of the disease: early progressive (1-2 months), established (5-8 months) or late stages (12 months) and age-matched wildtype controls (NFR/NFR), half of which were implanted with a progesterone pellet (20 mg) for 18 days. In untreated Wobblers, degenerating vacuolated motoneurons were initially abundant, experienced a slight reduction at the established stage and dramatically diminished during the late period. In motoneurons, the cholinergic marker choline acetyltransferase (ChAT) was reduced at all stages of the Wobbler disease, whereas hyperexpression of the growth-associated protein (GAP43) mRNA preferentially occurred at the early progressive and established stages. Progesterone therapy significantly reduced motoneuron vacuolation, enhanced ChAT immunoreactive perikarya and reduced the hyperexpression of GAP43 during the early progressive and established stages. At all stage periods, untreated Wobblers showed high density of glial fibrillary acidic protein (GFAP)+ astrocytes and decreased number of glutamine synthase (GS) immunostained cells. Progesterone treatment down-regulated GFAP+ astrocytes and up-regulated GS+ cell number. These data reinforced the usefulness of progesterone to improve motoneuron and glial cell abnormalities of Wobbler mice and further showed that therapeutic benefit seems more effective at the early progressive and established periods, rather than on advance stages of spinal cord neurodegeneration.


Subject(s)
Motor Neurons/drug effects , Motor Neurons/pathology , Neuroglia/drug effects , Neuroglia/pathology , Progesterone/pharmacology , Spinal Cord Diseases/pathology , Spinal Cord/pathology , Animals , Anterior Horn Cells/drug effects , Anterior Horn Cells/enzymology , Anterior Horn Cells/pathology , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/pathology , Cell Count , Choline O-Acetyltransferase/metabolism , Disease Models, Animal , Female , GAP-43 Protein/genetics , GAP-43 Protein/metabolism , Gene Expression Regulation/drug effects , Genotype , Glial Fibrillary Acidic Protein/metabolism , Glutamate-Ammonia Ligase/metabolism , Image Processing, Computer-Assisted , Male , Mice , Mice, Neurologic Mutants , Motor Neurons/enzymology , Neuroglia/enzymology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spinal Cord/drug effects , Spinal Cord/metabolism , Spinal Cord Diseases/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...