Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Theory Comput ; 20(2): 963-976, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38175797

ABSTRACT

Glycans constitute one of the most complex families of biological molecules. Despite their crucial role in a plethora of biological processes, they remain largely uncharacterized because of their high complexity. Their intrinsic flexibility and the vast variability associated with the many combination possibilities have hampered their experimental determination. Although theoretical methods have proven to be a valid alternative to the study of glycans, the large size associated with polysaccharides, proteoglycans, and glycolipids poses significant challenges to a fully atomistic description of biologically relevant glycoconjugates. On the other hand, the exquisite dependence on hydrogen bonds to determine glycans' structure makes the development of simplified or coarse-grained (CG) representations extremely challenging. This is particularly the case when glycan representations are expected to be compatible with CG force fields that include several molecular types. We introduce a CG representation able to simulate a wide variety of polysaccharides and common glycosylation motifs in proteins, which is fully compatible with the CG SIRAH force field. Examples of application to N-glycosylated proteins, including antibody recognition and calcium-mediated glycan-protein interactions, highlight the versatility of the enlarged set of CG molecules provided by SIRAH.


Subject(s)
Molecular Dynamics Simulation , Proteins , Glycosylation , Proteins/chemistry , Antibodies , Polysaccharides
3.
J Chem Inf Model ; 60(2): 964-973, 2020 02 24.
Article in English | MEDLINE | ID: mdl-31840995

ABSTRACT

Post-translational modifications (PTMs) on proteins significantly enlarge the physicochemical diversity present in biological macromolecules, altering function, localization, and interactions. Despite their critical role in regulating cellular processes, theoretical methods are not yet fully capable of coping with this diversity. These limitations are particularly more marked for coarse-grained (CG) models, in which comprehensive and self-consistent parametrizations are less frequent. Here we present a set of topologies and interaction parameters for the most common PTMs, fully compatible with the SIRAH force field. The PTMs introduced here reach the same level of structural description of the existing SIRAH force field, expanding the chemical spectrum with promising applications in dynamical protein-protein interactions in large and complex cellular environments.


Subject(s)
Molecular Dynamics Simulation , Protein Processing, Post-Translational , Proteins/chemistry , Proteins/metabolism , Methylation , Phosphorylation , Protein Conformation
4.
PeerJ ; 4: e2253, 2016.
Article in English | MEDLINE | ID: mdl-27547559

ABSTRACT

Post-translational modifications of proteins expand the diversity of the proteome by several orders of magnitude and have a profound effect on several biological processes. Their detection by experimental methods is not free of limitations such as the amount of sample needed or the use of destructive procedures to obtain the sample. Certainly, new approaches are needed and, therefore, we explore here the feasibility of using (13)C chemical shifts of different nuclei to detect methylation, acetylation and glycosylation of protein residues by monitoring the deviation of the (13)C chemical shifts from the expected (mean) experimental value of the non-modified residue. As a proof-of-concept, we used (13)C chemical shifts, computed at the DFT-level of theory, to test this hypothesis. Moreover, as a validation test of this approach, we compare our theoretical computations of the (13)Cε chemical-shift values against existing experimental data, obtained from NMR spectroscopy, for methylated and acetylated lysine residues with good agreement within ∼1 ppm. Then, further use of this approach to select the most suitable (13)C-nucleus, with which to determine other modifications commonly seen, such as methylation of arginine and glycosylation of serine, asparagine and threonine, shows encouraging results.

5.
J Comput Chem ; 35(25): 1854-64, 2014 Sep 30.
Article in English | MEDLINE | ID: mdl-25066622

ABSTRACT

Knowledge of the three-dimensional structures of glycans and glycoproteins is useful for a full understanding of molecular processes in which glycans are involved, such as antigen-recognition and virus infection, to name a few. Among the ubiquitous nuclei in glycan molecules, the (13)C nucleus is an attractive candidate for computation of theoretical chemical shifts at the quantum chemical level of theory to validate and determine glycan structures. For this purpose, it is important to determine, first, which carbons can be used as probes to sense conformational changes and, second, all factors that affect the computation of the shielding, at the density functional theory (DFT) level of theory, of those carbons. To answer such questions, we performed a series of analyses on low-energy conformations, obtained by sampling the glycosidic torsional angles (ϕ, ψ) every 10°, of 12 disaccharides. Our results provide evidence that: (i) the carbons that participate in the glycosidic linkage are the most sensitive probes with which to sense conformational changes of disaccharides; (ii) the rotation of the hydroxyl groups closest to the glycosidic linkage significantly affects the computation of the shieldings of the carbons that participate in the glycosidic linkage; (iii) it is not possible to obtain the shieldings of one disaccharide from the computed values of a different disaccharide or from those disaccharides that differ in the anomeric state; and (iv) a proper basis set distribution, a functional, and a step size, with which to sample the conformational space, are necessary to compute shieldings accurately and rapidly.


Subject(s)
Carbon Isotopes/chemistry , Disaccharides/chemistry , Amylose/chemistry , Entropy , Glycoproteins/chemistry , Maltose/chemistry , Molecular Conformation , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...