Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteomics ; 299: 105156, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38467267

ABSTRACT

Plants exhibit phenotypic plasticity in response to environmental variations, which can lead to stable genetic and physiological adaptations if exposure to specific conditions is prolonged. Myrsine coriacea demonstrates this through its ability to thrive in diverse environments. The objective of the article is to investigate potential differences in protein accumulation and physiological responses of M. coriacea by cultivating plants from seeds collected from four populations at different altitudes in a common garden experiment. Additionally, we aim to evaluate whether these differences exhibit genetic fixation. Through integrated physiological and proteomic analyses, we identified 170 differentially accumulated proteins and observed significant physiological differences among the populations. The high-altitude population (POP1) exhibited a unique proteomic profile with significant down-regulation of proteins involved in carbon fixation and energy metabolism, suggesting a potential reduction in photosynthetic efficiency. Physiological analyses showed lower leaf nitrogen content, net CO2 assimilation rate, specific leaf area, and relative growth rate in stem height for POP1, alongside higher leaf carbon isotopic composition (δ13C) and leaf carbon (C) content. These findings provide insight into the complex interplay between proteomic and physiological adaptations in M. coriacea and underscore the importance of local adaptations. SIGNIFICANCE: We investigate the adaptive responses of M. coriacea, a shrub with a broad phenotypic range, by cultivating plants from seeds collected at four different altitudes in a common garden experiment. These findings provide insight into the complex interplay between proteomic and physiological adaptations in M. coriacea and underscore the importance of local adaptations in the face of climate change. This study contributes to advancing our understanding of the influence of altitude-specific selection pressures on the molecular biology and physiology of plants in natural populations. Our findings provide valuable insights that enhance our ability to predict and comprehend how plants respond to climate change.


Subject(s)
Altitude , Myrsine , Proteomics , Adaptation, Physiological , Plants , Carbon
2.
An Acad Bras Cienc ; 94(3): e20210820, 2022.
Article in English | MEDLINE | ID: mdl-35857965

ABSTRACT

We investigated whether essential oil and aqueous and ethanolic extracts from M. vittoriana leaves have phytotoxic effects on the germination and initial development, and cytogenotoxic effects on the cell cycle, of model plants. The essential oil and extracts of M. vittoriana were characterized and used as treatments in phytotoxicity and cytotoxicity tests. The results indicated a reduction in germinative parameters and plant growth, with the higher concentrations of extracts and essential oil having the most evident effects. The cell cycle was also affected with a reduction of the mitotic index and the presence of chromosomal and nuclear alterations. All treatments showed clastogenic and aneugenic modes of action. The results can be associated with the synergistic effects of metabolites found in the extracts and essential oil, mainly the presence of the sesquiterpene germacrene D in the essential oil and of catechins, saponins, and tannins in the extracts. These substances inhibit plant germination and growth, confirming the phytotoxic effects of M. vittoriana in plant models, which should now be tested under field conditions.


Subject(s)
Alkaloids , Myrtaceae , Oils, Volatile , Alkaloids/pharmacology , Oils, Volatile/chemistry , Phytochemicals/analysis , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Leaves/chemistry
3.
Ecol Evol ; 12(5): e8943, 2022 May.
Article in English | MEDLINE | ID: mdl-35646321

ABSTRACT

The increase in severity of droughts associated with greater mortality and reduced vegetation growth is one of the main threats to tropical forests. Drought resilience of tropical forests is affected by multiple biotic and abiotic factors varying at different scales. Identifying those factors can help understanding the resilience to ongoing and future climate change. Altitude leads to high climate variation and to different forest formations, principally moist or dry tropical forests with contrasted vegetation structure. Each tropical forest can show distinct responses to droughts. Locally, topography is also a key factor controlling biotic and abiotic factors related to drought resilience in each forest type. Here, we show that topography has key roles controlling biotic and abiotic factors in each forest type. The most important abiotic factors are soil nutrients, water availability, and microclimate. The most important biotic factors are leaf economic and hydraulic plant traits, and vegetation structure. Both dry tropical forests and ridges (steeper and drier habitats) are more sensitive to droughts than moist tropical forest and valleys (flatter and wetter habitats). The higher mortality in ridges suggests that conservative traits are not sufficient to protect plants from drought in drier steeper habitats. Our synthesis highlights that altitude and topography gradients are essential to understand mechanisms of tropical forest's resilience to future drought events. We described important factors related to drought resilience, however, many important knowledge gaps remain. Filling those gaps will help improve future practices and studies about mitigation capacity, conservation, and restoration of tropical ecosystems.

4.
Physiol Plant ; 174(3): e13719, 2022 May.
Article in English | MEDLINE | ID: mdl-35587454

ABSTRACT

Climate change will affect the distribution of many tropical plant species. However, the understanding of how dioecious tropical species cope with different environmental conditions is still limited. To address this issue, we investigated how secondary trait attributes in populations of the dioecious tropical tree Myrsine coriacea change along an altitudinal gradient. Eighty individual plants (40 male and 40 female) were selected among seven natural populations. Leaf variation in morphological and stomatal traits, and carbon and nitrogen isotopic compositions were analyzed. Female plants had greater isotopic leaf carbon composition (δ13 C) and nitrogen content than male plants, increasing their carboxylation capacity. Plants of both sexes had smaller stomata, greater water-use efficiency (greater δ13 C), and greater nitrogen isotopic composition (δ15 N) at higher altitudes. They also showed lower δ15 N and had greater carbon: nitrogen ratios at lower altitudes. There was a lack of coordination between stomatal and vein traits, which was compensated for by variation in specific leaf areas. This mechanism was essential for increasing plant performance under the limiting conditions found by the species at higher altitudes.


Subject(s)
Myrsine , Trees , Ataxia , Carbon , Nitrogen , Photosynthesis , Plant Leaves/anatomy & histology , Plants
5.
Sci Total Environ ; 766: 144234, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33418256

ABSTRACT

Droughts have increased in frequency, duration, and severity across most of the tropics but their effect on forest communities remain not fully understood. Here we assessed the effects of a severe El Niño-induced drought event on dominant and low abundance understory plant species and the consequent impacts on ecosystem functions in the South American Atlantic Forest. We established 20 permanent plots with contrasting vegetation structure and topography. In each plot, we measured the stem diameter at breast height (DBH) of every understory woody plant (i.e. 1 to 10 cm stem diameter) before and after a severe 4-year drought event to calculate relative growth and mortality rates after drought. Litter biomass, litter nutrient content and soil nutrients, as well as tree canopy cover, were also quantified. High stem density reduced survival to drought for both dominant and low abundance understory woody species. The growth rate of dominant and low abundance species was lower on steeper slopes during the drought. Dominant species were the main contributor of litter biomass production whereas low abundance species were important drivers of litter quality. Overall, our findings suggest that habitats with low tree density and larger trees on flat areas, such as in valleys, can act as refuges for understory plant species during drought periods. These habitats are resource-rich, providing nutrients and water during unfavorable drought periods and might improve forest resilience to climate change in the long term.


Subject(s)
Droughts , Ecosystem , El Nino-Southern Oscillation , Forests , Trees
6.
Biodivers Data J ; 8: e50837, 2020.
Article in English | MEDLINE | ID: mdl-32508509

ABSTRACT

BACKGROUND: Brazil is one of the most biodiverse countries in the world, with about 37,000 species of land plants. Part of this biodiversity is within protected areas. The development of online databases in the last years greatly improved the available biodiversity data. However, the existing databases do not provide information about the protected areas in which individual plant species occur. The lack of such information is a crucial gap for conservation actions. This study aimed to show how the information captured from online databases, cleaned by a protocol and verified by taxonomists allowed us to obtain a comprehensive list of the vascular plant species from the "Parque Nacional do Itatiaia", the first national park founded in Brazil. All existing records in the online database JABOT (15,100 vouchers) were downloaded, resulting in 11,783 vouchers identified at the species level. Overall, we documented 2,316 species belonging to 176 families and 837 genera of vascular plants in the "Parque Nacional do Itatiaia". Considering the whole vascular flora, 2,238 species are native and 78 are non-native. NEW INFORMATION: The "Parque Nacional do Itatiaia" houses 13% of the angiosperm and 37% of the fern species known from the Brazilian Atlantic Forest. Amongst these species, 82 have been cited as threatened, following IUCN categories (CR, EN or VU), seven are data deficient (DD) and 15 have been classified as a conservation priority, because they are only known from a single specimen collected before 1969.

SELECTION OF CITATIONS
SEARCH DETAIL
...