Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1287367, 2023.
Article in English | MEDLINE | ID: mdl-38143742

ABSTRACT

Background and aims: The co-infection of hepatitis B (HBV) patients with the hepatitis D virus (HDV) causes the most severe form of viral hepatitis and thus drastically worsens the course of the disease. Therapy options for HBV/HDV patients are still limited. Here, we investigated the potential of natural killer (NK) cells that are crucial drivers of the innate immune response against viruses to target HDV-infected hepatocytes. Methods: We established in vitro co-culture models using HDV-infected hepatoma cell lines and human peripheral blood NK cells. We determined NK cell activation by flow cytometry, transcriptome analysis, bead-based cytokine immunoassays, and NK cell-mediated effects on T cells by flow cytometry. We validated the mechanisms using CRISPR/Cas9-mediated gene deletions. Moreover, we assessed the frequencies and phenotype of NK cells in peripheral blood of HBV and HDV superinfected patients. Results: Upon co-culture with HDV-infected hepatic cell lines, NK cells upregulated activation markers, interferon-stimulated genes (ISGs) including the death receptor ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), produced interferon (IFN)-γ and eliminated HDV-infected cells via the TRAIL-TRAIL-R2 axis. We identified IFN-ß released by HDV-infected cells as an important enhancer of NK cell activity. In line with our in vitro data, we observed activation of peripheral blood NK cells from HBV/HDV co-infected, but not HBV mono-infected patients. Conclusion: Our data demonstrate NK cell activation in HDV infection and their potential to eliminate HDV-infected hepatoma cells via the TRAIL/TRAIL-R2 axis which implies a high relevance of NK cells for the design of novel anti-viral therapies.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis D , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/metabolism , Ligands , Hepatitis D/metabolism , Interferons/metabolism , Hepatitis Delta Virus/genetics , Killer Cells, Natural , Tumor Necrosis Factors/metabolism , Apoptosis , Liver Neoplasms/metabolism
2.
Front Immunol ; 13: 924775, 2022.
Article in English | MEDLINE | ID: mdl-35769460

ABSTRACT

Environmental conditions greatly shape the phenotype and function of immune cells. Specifically, hypoxic conditions that exist within tissues and organs have been reported to affect both the adaptive and the innate immune system. Natural killer (NK) cells belong to the innate immune system. They are among the first immune cells responding to infections and are involved in tumor surveillance. NK cells produce cytokines that shape other innate and adaptive immune cells, and they produce cytolytic molecules leading to target cell killing. Therefore, they are not only involved in steady state tissue homeostasis, but also in pathogen and tumor clearance. Hence, understanding the role of NK cells in pathological and physiological immune biology is an emerging field. To date, it remains incompletely understood how the tissue microenvironment shapes NK cell phenotype and function. In particular, the impact of low oxygen concentrations in tissues on NK cell reactivity has not been systematically dissected. Here, we present a comprehensive review focusing on two highly compelling hypoxic tissue environments, the tumor microenvironment (pathological) and the decidua (physiological) and compare their impact on NK cell reactivity.


Subject(s)
Killer Cells, Natural , Neoplasms , Cytokines , Female , Humans , Hypoxia , Neovascularization, Pathologic , Pregnancy , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...