Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 14(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38869596

ABSTRACT

A new series of [Fe3-xLnx]O4 nanoparticles, with Ln = Gd; Dy; Lu and x = 0.05; 0.1; 0.15, was synthesized using the coprecipitation method. Analyses by X-ray diffraction (XRD), Rietveld refinement, and high-resolution transmission electron microscopy (HRTEM) indicate that all phases crystallized in space group Fd3¯m, characteristic of spinels. The XRD patterns, HRTEM, scanning electron microscopy analysis (SEM-EDS), and Raman spectra showed single phases. Transmission electron microscopy (TEM), Rietveld analysis, and Scherrer's calculations confirm that these materials are nanoparticles with sizes in the range of ~6 nm to ~13 nm. Magnetic measurements reveal that the saturation magnetization (Ms) of the as-prepared ferrites increases with lanthanide chemical substitution (x), while the coercivity (Hc) has low values. The Raman analysis confirms that the compounds are ferrites and the Ms behavior can be explained by the relationship between the areas of the signals. The magnetic measurements indicate superparamagnetic behavior. The blocking temperatures (TB) were estimated from ZFC-FC measurements, and the use of the Néel equation enabled the magnetic anisotropy to be estimated.

2.
Nat Chem ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553587

ABSTRACT

Understanding the relationship between a polypeptide sequence and its phase separation has important implications for analysing cellular function, treating disease and designing novel biomaterials. Several sequence features have been identified as drivers for protein liquid-liquid phase separation (LLPS), schematized as a 'molecular grammar' for LLPS. Here we further probe how sequence modulates phase separation and the material properties of the resulting condensates, targeting sequence features previously overlooked in the literature. We generate sequence variants of a repeat polypeptide with either no charged residues, high net charge, no glycine residues or devoid of aromatic or arginine residues. All but one of 12 variants exhibited LLPS, albeit to different extents, despite substantial differences in composition. Furthermore, we find that all the condensates formed behaved like viscous fluids, despite large differences in their viscosities. Our results support the model of multiple interactions between diverse residue pairs-not just a handful of residues-working in tandem to drive the phase separation and dynamics of condensates.

3.
Biomacromolecules ; 24(8): 3729-3741, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37525441

ABSTRACT

Microstructured hydrogels are promising platforms to mimic structural and compositional heterogeneities of the native extracellular matrix (ECM). The current state-of-the-art soft matter patterning techniques for generating ECM mimics can be limited owing to their reliance on specialized equipment and multiple time- and energy-intensive steps. Here, a photocross-linking methodology that traps various morphologies of phase-separated multicomponent formulations of compositionally distinct resilin-like polypeptides (RLPs) is reported. Turbidimetry and quantitative 1H NMR spectroscopy were utilized to investigate the sequence-dependent liquid-liquid phase separation of multicomponent solutions of RLPs. Differences between the intermolecular interactions of two different photocross-linkable RLPs and a phase-separating templating RLP were exploited for producing microstructured hydrogels with tunable control over pore diameters (ranging from 1.5 to 150 µm) and shear storage moduli (ranging from 0.2 to 5 kPa). The culture of human mesenchymal stem cells demonstrated high viability and attachment on microstructured hydrogels, suggesting their potential for developing customizable platforms for regenerative medicine applications.


Subject(s)
Hydrogels , Regenerative Medicine , Humans , Hydrogels/chemistry , Peptides/chemistry , Insect Proteins/chemistry
4.
Nanotechnology ; 34(27)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37023726

ABSTRACT

Molecular beam epitaxy growth and optical properties of GaN quantum disks in AlN nanowires were investigated, with the purpose of controlling the emission wavelength of AlN nanowire-based light emitting diodes. Besides GaN quantum disks with a thickness ranging from 1 to 4 monolayers, a special attention was paid to incomplete GaN disks exhibiting lateral confinement. Their emission consists of sharp lines which extend down to 215 nm, in the vicinity of AlN band edge. The room temperature cathodoluminescence intensity of an ensemble of GaN quantum disks embedded in AlN nanowires is about 20% of the low temperature value, emphasizing the potential of ultrathin/incomplete GaN quantum disks for deep UV emission.

5.
Res Sq ; 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36993697

ABSTRACT

Ferroptosis is a recently described form of regulated cell death initiated by the iron-mediated one-electron reduction of lipid hydroperoxides (LOOH). Cytochrome P450 2E1 (CYP2E1) induction, a consequence of genetic polymorphisms or/and gene induction by xenobiotics, may promote ferroptosis by contributing to the cellular pool of LOOH. However, CYP2E1 induction also increases the transcription of anti-ferroptotic genes that regulate the activity of glutathione peroxidase 4 (GPX4), the main ferroptosis inhibitor. Based on the above, we hypothesize that the impact of CYP2E1 induction on ferroptosis depends on the balance between pro- and anti-ferroptotic pathways triggered by CYP2E1. To test our hypothesis, ferroptosis was induced with class 2 inducers (RSL-3 or ML-162) in mammalian COS-7 cancer cells that don't express CYP2E1 (Mock cells), and in cells engineered to express human CYP2E1 (WT cells), and the impact on viability, lipid peroxidation and GPX4 was assessed. CYP2E1 overexpression protected COS-7 cancer cells against ferroptosis, evidenced by an increase in the IC50 and a decrease in lipid ROS in WT versus Mock cells after exposure to class 2 inducers. CYP2E1 overexpression produced an 80% increase in the levels of the GPX4 substrate glutathione (GSH). Increasing GSH in Mock cells protected cells against ferroptosis by ML-162. Depleting GSH, or inhibiting Nrf2 in WT cells reverted the protective effect mediated by CYP2E1, causing a decrease in the IC50 and an increase in lipid ROS after exposure to ML-162. These results show that CYP2E1 overexpression protects COS-7 cancer cells against ferroptosis, an effect probably mediated by Nrf2-dependent GSH induction.

6.
Adv Drug Deliv Rev ; 193: 114673, 2023 02.
Article in English | MEDLINE | ID: mdl-36574920

ABSTRACT

Injectable nanocarriers and hydrogels have found widespread use in a variety of biomedical applications such as local and sustained biotherapeutic cargo delivery, and as cell-instructive matrices for tissue engineering. Recent advances in the development and application of recombinant protein-based materials as injectable platforms under physiological conditions have made them useful platforms for the development of nanoparticles and tissue engineering matrices, which are reviewed in this work. Protein-engineered biomaterials are highly customizable, and they provide distinctly tunable rheological properties, encapsulation efficiencies, and delivery profiles. In particular, the key advantages of emerging technologies which harness the stimuli-responsive properties of recombinant polypeptide-based materials are highlighted in this review.


Subject(s)
Biocompatible Materials , Tissue Engineering , Humans , Hydrogels , Recombinant Proteins , Peptides
7.
Nanomaterials (Basel) ; 12(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36080089

ABSTRACT

A three-dimensional kinetic Monte Carlo methodology is developed to study the strained epitaxial growth of wurtzite GaN/AlN quantum dots. It describes the kinetics of effective GaN adatoms on an hexagonal lattice. The elastic strain energy is evaluated by a purposely devised procedure: first, we take advantage of the fact that the deformation in a lattice-mismatched heterostructure is equivalent to that obtained by assuming that one of the regions of the system is subjected to a properly chosen uniform stress (Eshelby inclusion concept), and then the strain is obtained by applying the Green's function method. The standard Monte Carlo method has been modified to implement a multiscale algorithm that allows the isolated adatoms to perform long diffusion jumps. With these state-of-the art modifications, it is possible to perform efficiently simulations over large areas and long elapsed times. We have taylored the model to the conditions of molecular beam epitaxy under N-rich conditions. The corresponding simulations reproduce the different stages of the Stranski-Krastanov transition, showing quantitative agreement with the experimental findings concerning the critical deposition, and island size and density. The influence of growth parameters, such as the relative fluxes of Ga and N and the substrate temperature, is also studied and found to be consistent with the experimental observations. In addition, the growth of stacked layers of quantum dots is also simulated and the conditions for their vertical alignment and homogenization are illustrated. In summary, the developed methodology allows one to reproduce the main features of the self-organized quantum dot growth and to understand the microscopic mechanisms at play.

8.
Sensors (Basel) ; 21(8)2021 Apr 17.
Article in English | MEDLINE | ID: mdl-33920715

ABSTRACT

This paper proposes a new vibration-based structural health monitoring method for the identification of delamination defects in composite bulkheads used in small-length fiber-based ships. The core of this work is to find out if the variations of vibration energy can be efficiently used as a key performance indicator for the detection and quantification of delamination defects in marine composite bulkheads. For this purpose, the changes of vibrational energy exerted by delamination defects in sandwich and monolithic composite panel bulkheads with different types of delamination phenomenon are investigated using a non-destructive test. Experiments show that the overall vibration energy of the bulkheads is directly dependent on the damage conditions of the specimens and therefore, the variations of this parameter are a good indicator of the incorporation of delamination defects in composite bulkheads. Additionally, the overall vibration energy changes also give interesting information about the severity of the delamination defect in the panels. Hence, this methodology based on vibratory energy can be used to accurately determine delamination defects in medium-sized composite bulkheads with the advantages of being a simple and cost-effective approach. The findings of this research possess important applications for the identification of delamination failures in composite components such as bulkheads, turbine blades, and aircraft structures, among others.

9.
ACS Biomater Sci Eng ; 7(9): 4244-4257, 2021 09 13.
Article in English | MEDLINE | ID: mdl-33464811

ABSTRACT

Heterogeneities in hydrogel scaffolds are known to impact the performance of cells in cell-laden materials constructs, and we have employed the phase separation of resilin-like polypeptides (RLPs) as a means to generate such materials. Here, we study the compositional features of resilin-like polypeptides (RLPs) that further enable our control of their liquid-liquid phase separation (LLPS) and how such control impacts the formation of microstructured hydrogels. The evaluation of the phase separation of RLPs in solutions of ammonium sulfate offers insights into the sequence-dependent LLPS of the RLP solutions, and atomistic simulations, along with 2D-nuclear Overhauser effect spectroscopy (NOESY) and correlated spectroscopy (COSY) 1H NMR, suggest specific amino acid interactions that may mediate this phase behavior. The acrylamide functionalization of RLPs enables their photo-cross-linking into hydrogels and also enhances the phase separation of the polypeptides. A heating-cooling protocol promotes the formation of stable emulsions that yield different microstructured morphologies with tunable rheological properties. These findings offer approaches for choosing RLP compositions with phase behaviors that can be easily tuned with differences in temperature to control the resulting morphology and mechanical behavior of the heterogeneous hydrogels in regimes useful for biological applications.


Subject(s)
Hydrogels , Insect Proteins , Peptides , Rheology
10.
Macromol Biosci ; 20(5): e1900360, 2020 05.
Article in English | MEDLINE | ID: mdl-32237050

ABSTRACT

Local, micromechanical environment is known to influence cellular function in heterogeneous hydrogels, and knowledge gained in micromechanics will facilitate the improved design of biomaterials for tissue regeneration. In this study, a system comprising microstructured resilin-like polypeptide (RLP)-poly(ethylene glycol) (PEG) hydrogels is utilized. The micromechanical properties of RLP-PEG hydrogels are evaluated with oscillatory shear rheometry, compression dynamic mechanic analysis, small-strain microindentation, and large-strain indentation and puncture over a range of different deformation length scales. The measured elastic moduli are consistent with volume averaging models, indicating that volume fraction, not domain size, plays a dominant role in determining the low strain mechanical response. Large-strain indentation under a confocal microscope enables the visualization of the microstructured hydrogel micromechanical deformation, emphasizing the translation, rotation, and deformation of RLP-rich domains. The fracture initiation energy results demonstrate that failure of the composite hydrogels is controlled by the RLP-rich phase, and their independence with domain size suggested that failure initiation is controlled by multiple domains within the strained volume. This approach and findings provide new quantitative insight into the micromechanical response of soft hydrogel composites and highlight the opportunities in employing these methods to understand the physical origins of mechanical properties of soft synthetic and biological materials.


Subject(s)
Elastomers/chemistry , Hydrogels/chemistry , Mechanical Phenomena , Insect Proteins/chemistry , Peptides/chemistry , Polyethylene Glycols/chemistry
11.
Article in English | MEDLINE | ID: mdl-31715566

ABSTRACT

We experimentally demonstrate the dynamical tuning of the acoustic field in a surface acoustic wave (SAW) cavity defined by a periodic arrangement of metal stripes on LiNbO3 substrate. Applying a dc voltage to the ends of the metal grid results in a temperature rise due to resistive heating that changes the frequency response of the device up to 0.3%, which can be used to control the acoustic transmission through the structure. The timescale of the switching is demonstrated to be of about 200 ms. In addition, we have also performed finite-element simulations of the transmission spectrum of a model system, which exhibits a temperature dependence consistent with the experimental data. The advances shown here enable easy, continuous, dynamical control and could be applied for a variety of substrates.

12.
Nanomaterials (Basel) ; 9(5)2019 May 03.
Article in English | MEDLINE | ID: mdl-31058842

ABSTRACT

Improvements in the spatial resolution of synchrotron-based X-ray probes have reached the nano-scale and they, nowadays, constitute a powerful platform for the study of semiconductor nanostructures and nanodevices that provides high sensitivity without destroying the material. Three complementary hard X-ray synchrotron techniques at the nanoscale have been applied to the study of individual nanowires (NWs) containing non-polar GaN/InGaN multi-quantum-wells. The trace elemental sensitivity of X-ray fluorescence allows one to determine the In concentration of the quantum wells and their inhomogeneities along the NW. It is also possible to rule out any contamination from the gold nanoparticle catalyst employed during the NW growth. X-ray diffraction and X-ray absorption near edge-structure probe long- and short-range order, respectively, and lead us to the conclusion that while the GaN core and barriers are fully relaxed, there is an induced strain in InGaN layers corresponding to a perfect lattice matching with the GaN core. The photoluminescence spectrum of non-polar InGaN quntum wells is affected by strain and the inhomogeneous alloy distribution but still exhibits a reasonable 20% relative internal quantum efficiency.

13.
Acta Biomater ; 84: 34-48, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30465923

ABSTRACT

Hydrogels have been broadly studied for applications in clinically motivated fields such as tissue regeneration, drug delivery, and wound healing, as well as in a wide variety of consumer and industry uses. While the control of mechanical properties and network structures are important in all of these applications, for regenerative medicine applications in particular, matching the chemical, topographical and mechanical properties for the target use/tissue is critical. There have been multiple alternatives developed for fabricating materials with microstructures with goals of controlling the spatial location, phenotypic evolution, and signaling of cells. The commonly employed polymers such as poly(ethylene glycol) (PEG), polypeptides, and polysaccharides (as well as others) can be processed by various methods in order to control material heterogeneity and microscale structures. We review here the more commonly used polymers, chemistries, and methods for generating microstructures in biomaterials, highlighting the range of possible morphologies that can be produced, and the limitations of each method. With a focus in liquid-liquid phase separation, methods and chemistries well suited for stabilizing the interface and arresting the phase separation are covered. As the microstructures can affect cell behavior, examples of such effects are reviewed as well. STATEMENT OF SIGNIFICANCE: Heterogeneous hydrogels with enhanced matrix complexity have been studied for a variety of biomimetic materials. A range of materials based on poly(ethylene glycol), polypeptides, proteins, and/or polysaccharides, have been employed in the studies of materials that by virtue of their microstructure, can control the behaviors of cells. Methods including microfluidics, photolithography, gelation in the presence of porogens, and liquid-liquid phase separation, are presented as possible strategies for producing materials, and their relative advantages and disadvantages are discussed. We also describe in more detail the various processes involved in LLPS, and how they can be manipulated to alter the kinetics of phase separation and to yield different microstructured materials.


Subject(s)
Biomimetic Materials , Drug Delivery Systems , Hydrogels , Regenerative Medicine , Tissue Engineering , Animals , Biomimetic Materials/chemistry , Biomimetic Materials/therapeutic use , Humans , Hydrogels/chemistry , Hydrogels/therapeutic use
14.
IUBMB Life ; 69(8): 578-594, 2017 08.
Article in English | MEDLINE | ID: mdl-28653367

ABSTRACT

Carnitine acyltransferases catalyze the reversible transfer of acyl groups from acyl-coenzyme A esters to l-carnitine, forming acyl-carnitine esters that may be transported across cell membranes. l-Carnitine is a wáter-soluble compound that humans may obtain both by food ingestion and endogenous synthesis from trimethyl-lysine. Most l-carnitine is intracellular, being present predominantly in liver, skeletal muscle, heart and kidney. The organic cation transporter-2 facilitates l-carnitine uptake inside cells. Congenital dysfunction of this transporter causes primary l-carnitine deficiency. Carnitine acetyltransferase is involved in the export of excess acetyl groups from the mitochondria and in acetylation reactions that regulate gene transcription and enzyme activity. Carnitine octanoyltransferase is a peroxysomal enzyme required for the complete oxidation of very long-chain fatty acids and phytanic acid, a branched-chain fatty acid. Carnitine palmitoyltransferase-1 is a transmembrane protein located on the outer mitochondrial membrane where it catalyzes the conversion of acyl-coenzyme A esters to acyl-carnitine esters. Carnitine acyl-carnitine translocase transports acyl-carnitine esters across the inner mitochondrial membrane in exchange for free l-carnitine that exits the mitochondrial matrix. Carnitine palmitoyltransferase-2 is anchored on the matrix side of the inner mitochondrial membrane, where it converts acyl-carnitine esters back to acyl-coenzyme A esters, which may be used in metabolic pathways, such as mitochondrial ß-oxidation. l-Carnitine enhances nonoxidative glucose disposal under euglycemic hyperinsulinemic conditions in both healthy individuals and patients with type 2 diabetes, suggesting that l-carnitine strengthens insulin effect on glycogen storage. The plasma level of acyl-carnitine esters, primarily acetyl-carnitine, increases during diabetic ketoacidosis, fasting, and physical activity, particularly high-intensity exercise. Plasma concentration of free l-carnitine decreases simultaneously under these conditions. © 2017 IUBMB Life, 69(8):578-594, 2017.


Subject(s)
Cardiomyopathies/genetics , Carnitine/deficiency , Carnitine/metabolism , Hyperammonemia/genetics , Liver/enzymology , Muscular Diseases/genetics , Solute Carrier Family 22 Member 5/genetics , Cardiomyopathies/metabolism , Carnitine/genetics , Carnitine Acyltransferases/genetics , Fatty Acids/metabolism , Humans , Hyperammonemia/metabolism , Liver/metabolism , Mitochondria/enzymology , Mitochondria/genetics , Muscular Diseases/metabolism , Oxidation-Reduction , Solute Carrier Family 22 Member 5/metabolism
15.
Nanotechnology ; 28(29): 295702, 2017 Jul 21.
Article in English | MEDLINE | ID: mdl-28574403

ABSTRACT

InAs nanowires grown by vapor-liquid-solid (VLS) method are investigated by photoluminescence. We observe that the Fermi energy of all samples is reduced by ∼20 meV when the size of the Au nanoparticle used for catalysis is increased from 5 to 20 nm. Additional capping with a thin InP shell enhances the optical emission and does not affect the Fermi energy. The unexpected behavior of the Fermi energy is attributed to the differences in the residual donor (likely carbon) incorporation in the axial (low) and lateral (high incorporation) growth in the VLS and vapor-solid (VS) methods, respectively. The different impurity incorporation rate in these two regions leads to a core/shell InAs homostructure. In this case, the minority carriers (holes) diffuse to the core due to the built-in electric field created by the radial impurity distribution. As a result, the optical emission is dominated by the core region rather than by the more heavily doped InAs shell. Thus, the photoluminescence spectra and the Fermi energy become sensitive to the core diameter. These results are corroborated by a theoretical model using a self-consistent method to calculate the radial carrier distribution and Fermi energy for distinct diameters of Au nanoparticles.

16.
Amino Acids ; 49(6): 1005-1028, 2017 06.
Article in English | MEDLINE | ID: mdl-28324172

ABSTRACT

Branched-chain amino acids (leucine, isoleucine and valine) are structurally related to branched-chain fatty acids. Leucine is 2-amino-4-methyl-pentanoic acid, isoleucine is 2-amino-3-methyl-pentanoic acid, and valine is 2-amino-3-methyl-butanoic acid. Similar to fatty acid oxidation, leucine and isoleucine produce acetyl-coA. Additionally, leucine generates acetoacetate and isoleucine yields propionyl-coA. Valine oxidation produces propionyl-coA, which is converted into methylmalonyl-coA and succinyl-coA. Branched-chain aminotransferase catalyzes the first reaction in the catabolic pathway of branched-chain amino acids, a reversible transamination that converts branched-chain amino acids into branched-chain ketoacids. Simultaneously, glutamate is converted in 2-ketoglutarate. The branched-chain ketoacid dehydrogenase complex catalyzes the irreversible oxidative decarboxylation of branched-chain ketoacids to produce branched-chain acyl-coA intermediates, which then follow separate catabolic pathways. Human tissue distribution and function of most of the enzymes involved in branched-chain amino acid catabolism is unknown. Congenital deficiencies of the enzymes involved in branched-chain amino acid metabolism are generally rare disorders. Some of them are associated with reduced pyruvate dehydrogenase complex activity and respiratory chain dysfunction that may contribute to their clinical phenotype. The biochemical phenotype is characterized by accumulation of the substrate to the deficient enzyme and its carnitine and/or glycine derivatives. It was established at the beginning of the twentieth century that the plasma level of the branched-chain amino acids is increased in conditions associated with insulin resistance such as obesity and diabetes mellitus. However, the potential clinical relevance of this elevation is uncertain.


Subject(s)
Amino Acids, Branched-Chain/metabolism , Multienzyme Complexes/metabolism , Humans , Oxidation-Reduction
17.
Biosci Rep ; 36(6)2016 12.
Article in English | MEDLINE | ID: mdl-27707936

ABSTRACT

Information about normal hepatic glucose metabolism may help to understand pathogenic mechanisms underlying obesity and diabetes mellitus. In addition, liver glucose metabolism is involved in glycosylation reactions and connected with fatty acid metabolism. The liver receives dietary carbohydrates directly from the intestine via the portal vein. Glucokinase phosphorylates glucose to glucose 6-phosphate inside the hepatocyte, ensuring that an adequate flow of glucose enters the cell to be metabolized. Glucose 6-phosphate may proceed to several metabolic pathways. During the post-prandial period, most glucose 6-phosphate is used to synthesize glycogen via the formation of glucose 1-phosphate and UDP-glucose. Minor amounts of UDP-glucose are used to form UDP-glucuronate and UDP-galactose, which are donors of monosaccharide units used in glycosylation. A second pathway of glucose 6-phosphate metabolism is the formation of fructose 6-phosphate, which may either start the hexosamine pathway to produce UDP-N-acetylglucosamine or follow the glycolytic pathway to generate pyruvate and then acetyl-CoA. Acetyl-CoA may enter the tricarboxylic acid (TCA) cycle to be oxidized or may be exported to the cytosol to synthesize fatty acids, when excess glucose is present within the hepatocyte. Finally, glucose 6-phosphate may produce NADPH and ribose 5-phosphate through the pentose phosphate pathway. Glucose metabolism supplies intermediates for glycosylation, a post-translational modification of proteins and lipids that modulates their activity. Congenital deficiency of phosphoglucomutase (PGM)-1 and PGM-3 is associated with impaired glycosylation. In addition to metabolize carbohydrates, the liver produces glucose to be used by other tissues, from glycogen breakdown or from de novo synthesis using primarily lactate and alanine (gluconeogenesis).


Subject(s)
Glucose/metabolism , Liver/metabolism , Glycosylation , Humans , Lipid Metabolism/physiology , Protein Processing, Post-Translational/physiology , Signal Transduction/physiology
18.
BBA Clin ; 5: 85-100, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27051594

ABSTRACT

In the human body, glycogen is a branched polymer of glucose stored mainly in the liver and the skeletal muscle that supplies glucose to the blood stream during fasting periods and to the muscle cells during muscle contraction. Glycogen has been identified in other tissues such as brain, heart, kidney, adipose tissue, and erythrocytes, but glycogen function in these tissues is mostly unknown. Glycogen synthesis requires a series of reactions that include glucose entrance into the cell through transporters, phosphorylation of glucose to glucose 6-phosphate, isomerization to glucose 1-phosphate, and formation of uridine 5'-diphosphate-glucose, which is the direct glucose donor for glycogen synthesis. Glycogenin catalyzes the formation of a short glucose polymer that is extended by the action of glycogen synthase. Glycogen branching enzyme introduces branch points in the glycogen particle at even intervals. Laforin and malin are proteins involved in glycogen assembly but their specific function remains elusive in humans. Glycogen is accumulated in the liver primarily during the postprandial period and in the skeletal muscle predominantly after exercise. In the cytosol, glycogen breakdown or glycogenolysis is carried out by two enzymes, glycogen phosphorylase which releases glucose 1-phosphate from the linear chains of glycogen, and glycogen debranching enzyme which untangles the branch points. In the lysosomes, glycogen degradation is catalyzed by α-glucosidase. The glucose 6-phosphatase system catalyzes the dephosphorylation of glucose 6-phosphate to glucose, a necessary step for free glucose to leave the cell. Mutations in the genes encoding the enzymes involved in glycogen metabolism cause glycogen storage diseases.

19.
PLoS One ; 10(9): e0138120, 2015.
Article in English | MEDLINE | ID: mdl-26422260

ABSTRACT

There is mounting evidence that urban areas influence biodiversity. Generalizations however require that multiple urban areas on multiple continents be examined. Here we evaluated the role of urban areas on avian diversity for a South American city, allowing us to examine the effects of urban features common worldwide, using the city of Valdivia, Chile as case study. We assessed the number of birds and their relative abundance in 152 grid cells of equal size (250 m2) distributed across the city. We estimated nine independent variables: land cover diversity (DC), building density (BD), impervious surface (IS),municipal green space (MG),non-municipal green space (NG), domestic garden space (DG), distance to the periphery (DP), social welfare index (SW), and vegetation diversity (RV). Impervious surface represent 41.8% of the study area, while municipal green, non-municipal green and domestic garden represent 11.6%, 23.6% and 16% of the non- man made surface. Exotic vegetation species represent 74.6% of the total species identified across the city. We found 32 bird species, all native with the exception of House Sparrow and Rock Pigeon. The most common species were House Sparrow and Chilean Swallow. Total bird richness responds negatively to IS and MG, while native bird richness responds positively to NG and negatively to BD, IS DG and, RV. Total abundance increase in areas with higher values of DC and BD, and decrease in areas of higher values of IS, SW and VR. Native bird abundance responds positively to NG and negatively to BD, IS MG, DG and RV. Our results suggest that not all the general patterns described in previous studies, conducted mainly in the USA, Europe, and Australia, can be applied to Latin American cities, having important implications for urban planning. Conservation efforts should focus on non-municipal areas, which harbor higher bird diversity, while municipal green areas need to be improved to include elements that can enhance habitat quality for birds and other species. These findings are relevant for urban planning in where both types of green space need to be considered, especially non-municipal green areas, which includes wetlands, today critically threatened by urban development.


Subject(s)
Birds/physiology , Ecosystem , Models, Biological , Urban Renewal , Animals , Chile , Female , Male
20.
J Plant Physiol ; 188: 72-9, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26439659

ABSTRACT

Two plant growth promoting rhizobacteria (PGPR) were tested to evaluate their capacity to prime rice seedlings against stress challenge (salt and Xanthomonas campestris infection). As is accepted that plants respond to biotic and abiotic stresses by generation of reactive oxygen species (ROS), enzyme activities related to oxidative stress (ascorbate peroxidase (APX, EC 1.11.1.11), guaiacol peroxidase (GPX, EC 1.11.1.7), glutathione reductase (GR, EC 1.6.4.2) and superoxide dismutase (SOD, EC 1.15.1.1)) as well as the pathogenesis-related proteins (PRs) ß-1,3-glucanase (PR2, EC 3.2.1.6) and chitinase (PR3, EC 3.2.1.14) were measured at 3 time points after stress challenge. In addition, photosynthetic parameters related with fluorescence emission of photosystem II (F0, Fv/Fm, ΦPSII and NPQ) were also measured although they were barely affected. Both strains were able to protect rice seedlings against salt stress. AMG272 reduced the salt symptoms over 47% with regard to control, and L81 over 90%. Upon pathogen challenge, 90% protection was achieved by both strains. All enzyme activities related to oxidative stress were modified by the two PGPR, especially APX and SOD upon salinity stress challenge, and APX and GR upon pathogen presence. Both bacteria induced chitinase activity 24 and 48 h after pathogen inoculation, and L81 induced ß-1,3-Glucanase activity 48 h after pathogen inoculation, evidencing the priming effect. These results indicate that these strains could be used as bio-fortifying agents in biotechnological inoculants in order to reduce the effects of different stresses, and indirectly reduce the use of agrochemicals.


Subject(s)
Aeromonas/physiology , Antibiosis , Bacillus/physiology , Oryza/microbiology , Oryza/physiology , Sodium Chloride/pharmacology , Xanthomonas campestris/physiology , Oryza/enzymology , Oxidative Stress , Photosynthesis , Seedlings/enzymology , Seedlings/microbiology , Seedlings/physiology , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...