Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 32(3): 382-8, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22133499

ABSTRACT

The influence of particle size and organic matter content of organic fraction of municipal solid waste (OFMSW) in the overall kinetics of dry (30% total solids) thermophilic (55°C) anaerobic digestion have been studied in a semi-continuous stirred tank reactor (SSTR). Two types of wastes were used: synthetic OFMSW (average particle size of 1mm; 0.71 g Volatile Solids/g waste), and OFMSW coming from a composting full scale plant (average particle size of 30 mm; 0.16 g Volatile Solids/g waste). A modification of a widely-validated product-generation kinetic model has been proposed. Results obtained from the modified-model parameterization at steady-state (that include new kinetic parameters as K, Y(pMAX) and θ(MIN)) indicate that the features of the feedstock strongly influence the kinetics of the process. The overall specific growth rate of microorganisms (µ(max)) with synthetic OFMSW is 43% higher compared to OFMSW coming from a composting full scale plant: 0.238 d(-1) (K=1.391 d(-1); Y(pMAX)=1.167 L CH(4)/gDOC(c); θ(MIN)=7.924 days) vs. 0.135 d(-1) (K=1.282 d(-1); Y(pMAX)=1.150 L CH(4)/gDOC(c); θ(MIN)=9.997 days) respectively. Finally, it could be emphasized that the validation of proposed modified-model has been performed successfully by means of the simulation of non-steady state data for the different SRTs tested with each waste.


Subject(s)
Garbage , Methane/analysis , Models, Chemical , Anaerobiosis , Bioreactors , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...