Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 263: 119587, 2022 11.
Article in English | MEDLINE | ID: mdl-36031183

ABSTRACT

The neural face perception network is distributed across both hemispheres. However, the dominant role in humans is virtually unanimously attributed to the right hemisphere. Interestingly, there are, to our knowledge, no imaging studies that systematically describe the distribution of hemispheric lateralization in the core system of face perception across subjects in large cohorts so far. To address this, we determined the hemispheric lateralization of all core system regions (i.e., occipital face area - OFA, fusiform face area - FFA, posterior superior temporal sulcus - pSTS) in 108 healthy subjects using functional magnetic resonance imaging (fMRI). We were particularly interested in the variability of hemispheric lateralization across subjects and explored how many subjects can be classified as right-dominant based on the fMRI activation pattern. We further assessed lateralization differences between different regions of the core system and analyzed the influence of handedness and sex on the lateralization with a generalized mixed effects regression model. As expected, brain activity was on average stronger in right-hemispheric brain regions than in their left-hemispheric homologues. This asymmetry was, however, only weakly pronounced in comparison to other lateralized brain functions (such as language and spatial attention) and strongly varied between individuals. Only half of the subjects in the present study could be classified as right-hemispheric dominant. Additionally, we did not detect significant lateralization differences between core system regions. Our data did also not support a general leftward shift of hemispheric lateralization in left-handers. Only the interaction of handedness and sex in the FFA revealed that specifically left-handed men were significantly more left-lateralized compared to right-handed males. In essence, our fMRI data did not support a clear right-hemispheric dominance of the face perception network. Our findings thus ultimately question the dogma that the face perception network - as measured with fMRI - can be characterized as "typically right lateralized".


Subject(s)
Facial Recognition , Male , Humans , Facial Recognition/physiology , Brain Mapping , Magnetic Resonance Imaging/methods , Brain/physiology , Functional Laterality/physiology
2.
Life (Basel) ; 12(8)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36013418

ABSTRACT

As we move through an environment, we update positions of our body relative to other objects, even when some objects temporarily or permanently leave our field of view-this ability is termed egocentric spatial updating and plays an important role in everyday life. Still, our knowledge about its representation in the brain is still scarce, with previous studies using virtual movements in virtual environments or patients with brain lesions suggesting that the precuneus might play an important role. However, whether this assumption is also true when healthy humans move in real environments where full body-based cues are available in addition to the visual cues typically used in many VR studies is unclear. Therefore, in this study we investigated the role of the precuneus in egocentric spatial updating in a real environment setting in 20 healthy young participants who underwent two conditions in a cross-over design: (a) stimulation, achieved through applying continuous theta-burst stimulation (cTBS) to inhibit the precuneus and (b) sham condition (activated coil turned upside down). In both conditions, participants had to walk back with blindfolded eyes to objects they had previously memorized while walking with open eyes. Simplified trials (without spatial updating) were used as control condition, to make sure the participants were not affected by factors such as walking blindfolded, vestibular or working memory deficits. A significant interaction was found, with participants performing better in the sham condition compared to real stimulation, showing smaller errors both in distance and angle. The results of our study reveal evidence of an important role of the precuneus in a real-environment egocentric spatial updating; studies on larger samples are necessary to confirm and further investigate this finding.

3.
Sci Rep ; 9(1): 1728, 2019 02 11.
Article in English | MEDLINE | ID: mdl-30741987

ABSTRACT

Brain correlates of performance monitoring, such as the Error-Related Negativity (ERN), are considerably influenced by situational factors. For instance, errors committed during social interaction typically elicit enhanced ERNs. While individual differences in ERN magnitude have been implicated in a wide variety of psychopathologies, it remains unclear how individual dispositions may interact with situational incentives to influence performance monitoring. Here, we analysed how interpersonal (Affiliation) and achievement-related (Agency) traits moderated the effects of interpersonal competition and interpersonal cooperation on the ERN. For this purpose, electroencephalography was collected from 78 participants while they performed a Flanker Task either in a competitive or in a cooperative social context (i.e., between-subjects design). We found that competition predicted enhanced error-related activity patterns compared to cooperation. Furthermore, participants who scored high in Affiliation elicited enhanced error-related activity. Conversely, high Agency scores were associated with reduced error-related activity, but this was only observed in the competitive context. These results indicate that the brain's response to error commission is not only sensitive to social incentives. Rather, the activity of the evaluative system that produces error signals appears to be crucially determined by the personal relevance of the incentives present in the context in which performance is evaluated.


Subject(s)
Achievement , Brain/physiology , Quantitative Trait, Heritable , Social Environment , Evoked Potentials , Humans , Psychomotor Performance , Reaction Time
4.
Proc Natl Acad Sci U S A ; 115(37): 9312-9317, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30154161

ABSTRACT

Recent molecular genetic studies have shown that the majority of genes associated with obesity are expressed in the central nervous system. Obesity has also been associated with neurobehavioral factors such as brain morphology, cognitive performance, and personality. Here, we tested whether these neurobehavioral factors were associated with the heritable variance in obesity measured by body mass index (BMI) in the Human Connectome Project (n = 895 siblings). Phenotypically, cortical thickness findings supported the "right brain hypothesis" for obesity. Namely, increased BMI is associated with decreased cortical thickness in right frontal lobe and increased thickness in the left frontal lobe, notably in lateral prefrontal cortex. In addition, lower thickness and volume in entorhinal-parahippocampal structures and increased thickness in parietal-occipital structures in participants with higher BMI supported the role of visuospatial function in obesity. Brain morphometry results were supported by cognitive tests, which outlined a negative association between BMI and visuospatial function, verbal episodic memory, impulsivity, and cognitive flexibility. Personality-BMI correlations were inconsistent. We then aggregated the effects for each neurobehavioral factor for a behavioral genetics analysis and estimated each factor's genetic overlap with BMI. Cognitive test scores and brain morphometry had 0.25-0.45 genetic correlations with BMI, and the phenotypic correlations with BMI were 77-89% explained by genetic factors. Neurobehavioral factors also had some genetic overlap with each other. In summary, obesity as measured by BMI has considerable genetic overlap with brain and cognitive measures. This supports the theory that obesity is inherited via brain function and may inform intervention strategies.


Subject(s)
Body Mass Index , Brain , Cognition , Feeding Behavior , Obesity , Brain/physiology , Brain/physiopathology , Female , Humans , Male , Obesity/genetics , Obesity/pathology , Obesity/physiopathology
5.
Front Psychol ; 8: 1268, 2017.
Article in English | MEDLINE | ID: mdl-28798706

ABSTRACT

Emotions play an important role in human communication, and the daily-life interactions of young children often include situations that require the verbalization of emotional states with verbal means, e.g., with emotion terms. Through them, one can express own emotional states and those of others. Thus, the acquisition of emotion terms allows children to participate more intensively in social contexts - a basic requirement for learning new words and for elaborating socio-emotional skills. However, little is known about how children acquire and process this specific word category, which is positioned between concrete and abstract words. In particular, the influence of valence on emotion word processing during childhood has not been sufficiently investigated. Previous research points to an advantage of positive words over negative and neutral words in word processing. While previous studies found valence effects to be influenced by factors such as arousal, frequency, concreteness, and task, it is still unclear if and how valence effects are also modified by age. The present study compares the performance of children aged from 5 to 12 years and adults in two experimental tasks: lexical decision (word or pseudoword) and emotional categorization (positive or negative). Stimuli consisted of 48 German emotion terms (24 positive and 24 negative) matched for arousal, concreteness, age of acquisition, word class, word length, morphological complexity, frequency, and neighborhood density. Results from both tasks reveal two developmental trends: First, with increasing age children responded faster and more correctly, suggesting that emotion vocabulary gradually becomes more stable and differentiated during middle childhood. Second, the influence of valence varied with age: younger children (5- and 6-year-olds) showed significantly higher performance levels for positive emotion terms compared to negative emotion terms, whereas older children and adults did not. This age-related valence effect in emotion word processing will be discussed with respect to linguistic and methodological aspects.

SELECTION OF CITATIONS
SEARCH DETAIL
...