Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 1209: 339837, 2022 May 29.
Article in English | MEDLINE | ID: mdl-35569848

ABSTRACT

The SuperCam instrument, onboard the Perseverance rover (Mars 2020 mission) is designed to perform remote analysis on the Martian surface employing several spectroscopic techniques such as Laser Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman (TRR), Time-Resolved Fluorescence (TRF) and Visible and Infrared (VISIR) reflectance. In addition, SuperCam also acquires high-resolution images using a color remote micro-imager (RMI) as well as sounds with its microphone. SuperCam has three main subsystems, the Mast Unit (MU) where the laser for chemical analysis and collection optics are housed, the Body Unit (BU) where the different spectrometers are located inside the rover, and the SuperCam Calibration Target (SCCT) located on the rover's deck to facilitate calibration tests at similar ambient conditions as the analyzed samples. To perform adequate calibrations on Mars, the 22 mineral samples included in the complex SCCT assembly must have a very homogeneous distribution of major and minor elements. The analysis and verification of such homogeneity for the 5-6 replicates of the samples included in the SCCT has been the aim of this work. To verify the physic-chemical homogeneity of the calibration targets, micro Energy Dispersive X-ray Fluorescence (EDXRF) imaging was first used on the whole surface of the targets, then the relative abundances of the detected elements were computed on 20 randomly distributed areas of 100 × 100 µm. For those targets showing a positive Raman response, micro-Raman spectroscopy imaging was performed on the whole surface of the targets at a resolution of 100 × 100 µm. The %RSD values (percent of relative standard deviation of mean values) for the major elements measured with EDXRF were compared with similar values obtained by two independent LIBS set-ups at spot sizes of 300 µm in diameter. The statistical analysis showed which elements were homogeneously distributed in the 22 mineral targets of the SCCT, providing their uncertainty values for further calibration. Moreover, nine of the 22 targets showed a good Raman response and their mineral distributions were also studied. Those targets can be also used for calibration purposes of the Raman part of SuperCam using the wavenumbers of their main Raman bands proposed in this work.


Subject(s)
Extraterrestrial Environment , Mars , Calibration , Extraterrestrial Environment/chemistry , Minerals/analysis , Spectrum Analysis, Raman/methods
2.
Space Sci Rev ; 216(8): 138, 2020.
Article in English | MEDLINE | ID: mdl-33281235

ABSTRACT

SuperCam is a highly integrated remote-sensing instrumental suite for NASA's Mars 2020 mission. It consists of a co-aligned combination of Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), Visible and Infrared Spectroscopy (VISIR), together with sound recording (MIC) and high-magnification imaging techniques (RMI). They provide information on the mineralogy, geochemistry and mineral context around the Perseverance Rover. The calibration of this complex suite is a major challenge. Not only does each technique require its own standards or references, their combination also introduces new requirements to obtain optimal scientific output. Elemental composition, molecular vibrational features, fluorescence, morphology and texture provide a full picture of the sample with spectral information that needs to be co-aligned, correlated, and individually calibrated. The resulting hardware includes different kinds of targets, each one covering different needs of the instrument. Standards for imaging calibration, geological samples for mineral identification and chemometric calculations or spectral references to calibrate and evaluate the health of the instrument, are all included in the SuperCam Calibration Target (SCCT). The system also includes a specifically designed assembly in which the samples are mounted. This hardware allows the targets to survive the harsh environmental conditions of the launch, cruise, landing and operation on Mars during the whole mission. Here we summarize the design, development, integration, verification and functional testing of the SCCT. This work includes some key results obtained to verify the scientific outcome of the SuperCam system.

3.
J Phys Chem B ; 110(37): 18609-18, 2006 Sep 21.
Article in English | MEDLINE | ID: mdl-16970490

ABSTRACT

This paper reports a theoretical investigation of the structure, stability, and electron charge density of cubic, rhombohedral, hexagonal, and monoclinic Al lattices. The equations of state and the elastic constants are computed from total energy calculations at different volumes and unit cell strains using the density functional theory approximation. The topology of the electron density is analyzed within the crystalline implementation of the atoms in molecules formalism. The results are discussed in light of the so-called anions in metallic matrices model, which permits the interpretation of the chemical bonding and the explanation of the existence of particular symmetries of inorganic crystals. First, the Al sublattices are identified as the reference building blocks of AlX(3) (X = F, Cl, OH) compounds. The calculations reveal that the equilibrium zero-pressure Al-Al shortest distance is around 2.75 A in all of the Al matrixes, similar to the value observed in the stable face centered cubic structure of Al at room conditions. Second, at their zero-pressure equilibrium geometries, the Al sublattices are found to fulfill the mechanical stability criteria or, alternatively, to show mechanical instabilities that are compatible with the distortions observed for the structures in AlX(3) crystals. However, at the equilibrium volumes of the AlX(3) crystals, all of the Al matrices violate the spinodal condition, and the cohesion and stabilization are provided by the nonmetallic X atoms. Third, the structural anisotropy of the Al sublattices seems to be the main factor to discriminate metallic matrices able to host nonmetallic elements. The inhomogeneities of the electron charge density, which favor the arrival of nonmetallic elements and the crystal formation, are notably enhanced in passing from the fcc structure of pure Al to the less isotropic Al matrices observed in AlX(3) compounds.

4.
Phys Rev B Condens Matter ; 54(10): 7034-7045, 1996 Sep 01.
Article in English | MEDLINE | ID: mdl-9984321
SELECTION OF CITATIONS
SEARCH DETAIL
...