Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Publication year range
1.
Clin Chem Lab Med ; 60(1): 66-73, 2022 01 26.
Article in English | MEDLINE | ID: mdl-34670030

ABSTRACT

OBJECTIVES: Serum indices included in clinical chemistry instruments are widely used by laboratories to assess the quality of samples. Instruments that report quantitative results allow an evaluation of their diagnostic performance in a similar way to other biochemical tests. The Spanish Society of Laboratory Medicine (SEQC-ML) launched a monthly External Quality program of serum indices in 2018 using three lyophilized materials of simultaneous annual distribution. We present the results of the first three years of the program. METHODS: The use of four different quality control materials with different concentrations in three alternate months allows an annual evaluation of the participant's accuracy. Assigned values are established by consensus among homogeneous groups, considering necessary at least 10 participants for a comparison at instrument level. The average percentage difference results per instrument allow the assessment of bias among groups. RESULTS: The imprecision of the three indices ranges between 3 and 9%, with no major differences among instruments. Significant differences were observed in all indices among instruments with more than 10 participants (Roche Cobas, Abbott Architect, Abbott Alinity and Siemens Advia). The 90th percentile of the distribution of percentage differences was used as the analytical performance specification (APS). An improvement in performance was observed in the first three years of the program, probably due to the learning curve effect. In 2020, APS of 7.8, 12.2 and 9.7% were proposed for hemolytic, icteric and lipemic indices, respectively. CONCLUSIONS: Serum indices have a great impact on the quality and the reliability of laboratory test results. Participation in proficiency testing programs for serum indices is helpful to encourage harmonization among providers and laboratories.


Subject(s)
Laboratories , Laboratory Proficiency Testing , Humans , Quality Control , Reproducibility of Results , Serum
3.
Adv Lab Med ; 1(2): 20200021, 2020 Jun.
Article in English, Spanish | MEDLINE | ID: mdl-37363778

ABSTRACT

Objectives: The stability of the analytes most commonly used in routine clinical practice has been the subject of intensive research, with varying and even conflicting results. Such is the case of alanine aminotransferase (ALT). The purpose of this study was to determine the stability of serum ALT according to different variables. Methods: A multicentric study was conducted in eight laboratories using serum samples with known initial catalytic concentrations of ALT within four different ranges, namely: <50 U/L (<0.83 µkat/L), 50-200 U/L (0.83-3.33 µkat/L), 200-400 U/L (3.33-6.67 µkat/L) and >400 U/L (>6.67 µkat/L). Samples were stored for seven days at two different temperatures using four experimental models and four laboratory analytical platforms. The respective stability equations were calculated by linear regression. A multivariate model was used to assess the influence of different variables. Results: Catalytic concentrations of ALT decreased gradually over time. Temperature (-4%/day at room temperature vs. -1%/day under refrigeration) and the analytical platform had a significant impact, with Architect (Abbott) showing the greatest instability. Initial catalytic concentrations of ALT only had a slight impact on stability, whereas the experimental model had no impact at all. Conclusions: The constant decrease in serum ALT is reduced when refrigerated. Scarcely studied variables were found to have a significant impact on ALT stability. This observation, added to a considerable inter-individual variability, makes larger studies necessary for the definition of stability equations.

4.
Biochem Med (Zagreb) ; 30(1): 010704, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31839724

ABSTRACT

INTRODUCTION: Diabetes mellitus (DM) is one of the most prevalent diseases worldwide. The objective of this study was to find out under what preanalytical conditions routine and diagnostic glucose tests are performed across Spanish laboratories; and also what criteria are used for DM diagnosis. MATERIALS AND METHODS: An online survey was performed by the Commission on Quality Assurance in the Extra-Analytical Phase of the Spanish Society of Laboratory Medicine (SEQC-ML). Access to the questionnaire was available on the home page of the SEQC-ML website during the period April-July 2018. Data analysis was conducted with the IBM SPSS© Statistics (version 20.0) program. RESULTS: A total of 96 valid surveys were obtained. Most laboratories were in public ownership, serving hospital and primary care patients, with high and medium workloads, and a predominance of mixed routine-urgent glucose testing. Serum tubes were the most used for routine glucose analysis (92%) and DM diagnosis (54%); followed by lithium-heparin plasma tubes (62%), intended primarily for urgent glucose testing; point-of-care testing devices were used by 37%; and plasma tubes with a glycolysis inhibitor, mainly sodium fluoride, by 19%. Laboratories used the cut-off values and criteria recognized worldwide for DM diagnosis in adults and glucose-impaired tolerance, but diverged in terms of fasting plasma glucose and gestational DM criteria. CONCLUSION: Preanalytical processing of routine and DM diagnostic glucose testing in Spain does not allow a significant, non-quantified influence of glycolysis on the results to be ruled out. Possible adverse consequences include a delay in diagnosis and possible under-treatment.


Subject(s)
Blood Glucose/analysis , Blood Specimen Collection/methods , Blood Specimen Collection/instrumentation , Diabetes Mellitus/diagnosis , Humans , Laboratories, Hospital/standards , Pre-Analytical Phase , Spain , Surveys and Questionnaires
5.
Rev. lab. clín ; 12(4): e66-e74, oct.-dic. 2019.
Article in Spanish | IBECS | ID: ibc-187312

ABSTRACT

El análisis de gases en sangre es una prueba frecuentemente solicitada en diferentes ámbitos hospitalarios. La medida de los parámetros incluidos en este análisis puede verse afectada por un elevado número de condiciones preanalíticas y es responsabilidad del laboratorio garantizar que los resultados reflejan de forma segura el equilibrio ácido-base y el estado de oxigenación del paciente. Aunque muchas de estas condiciones son comunes al resto de las magnitudes del laboratorio, como la identificación correcta del espécimen, algunas son propias del análisis de gases debido a la estabilidad de las magnitudes incluidas en él. Este documento establece recomendaciones para el control de las condiciones preanalíticas y otras fuentes de error relacionadas con el análisis de gases en sangre, tales como las características de los materiales empleados para la toma de muestra (jeringas, agujas y anticoagulantes), tipo de muestra (sangre arterial, venosa y capilar «arterializada») y las condiciones para el manejo y transporte de la muestra, incluyendo la influencia del tiempo transcurrido entre la extracción y el análisis, la temperatura de la muestra durante el transporte y el transporte en sí


Blood gas analysis is a commonly ordered test in different hospital settings. The measurement of the parameters included in this analysis is vulnerable to a huge number of pre-analytical conditions. Laboratory staff are responsible for ensuring that these results accurately reflect the acid-base and oxygenation status of the patient. Despite many pre-analytical steps in blood gas testing being common to other laboratory tests, such as proper sample identification, others are particular for this determination, such as the stability of the analytes measured. The aim of this document is to provide recommendations for the control of the pre-analytical variables and other error sources related to blood gas analysis. These include the characteristics of the materials used to collect the blood samples (syringes, needles and anticoagulants), the sample types (arterial, venous and «arterialised» capillary blood), as well as the conditions for sample handling and transport, including the effect of the time between sampling and analysis, the temperature during transport, and the type of transport


Subject(s)
Humans , Pre-Analytical Phase/methods , Acid-Base Imbalance/diagnosis , Blood Gas Analysis/methods , Acid-Base Equilibrium/physiology , Guidelines as Topic , Carbonic Acid/analysis , Bicarbonates/analysis , Carbon Dioxide/analysis , Oximetry/methods , Specimen Handling/methods , Anticoagulants/therapeutic use
6.
Clin Chem Lab Med ; 56(11): 1806-1818, 2018 10 25.
Article in English | MEDLINE | ID: mdl-29729140

ABSTRACT

BACKGROUND: The stability limit of an analyte in a biological sample can be defined as the time required until a measured property acquires a bias higher than a defined specification. Many studies assessing stability and presenting recommendations of stability limits are available, but differences among them are frequent. The aim of this study was to classify and to grade a set of bibliographic studies on the stability of five common blood measurands and subsequently generate a consensus stability function. METHODS: First, a bibliographic search was made for stability studies for five analytes in blood: alanine aminotransferase (ALT), glucose, phosphorus, potassium and prostate specific antigen (PSA). The quality of every study was evaluated using an in-house grading tool. Second, the different conditions of stability were uniformly defined and the percent deviation (PD%) over time for each analyte and condition were scattered while unifying studies with similar conditions. RESULTS: From the 37 articles considered as valid, up to 130 experiments were evaluated and 629 PD% data were included (106 for ALT, 180 for glucose, 113 for phosphorus, 145 for potassium and 85 for PSA). Consensus stability equations were established for glucose, potassium, phosphorus and PSA, but not for ALT. CONCLUSIONS: Time is the main variable affecting stability in medical laboratory samples. Bibliographic studies differ in recommedations of stability limits mainly because of different specifications for maximum allowable error. Definition of a consensus stability function in specific conditions can help laboratories define stability limits using their own quality specifications.


Subject(s)
Blood Specimen Collection/methods , Alanine Transaminase/blood , Blood Glucose/chemistry , Humans , Phosphorus/blood , Potassium/blood , Pre-Analytical Phase , Prostate-Specific Antigen/blood , Protein Stability , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...