Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
J Mech Behav Biomed Mater ; 4(8): 1929-35, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22098891

ABSTRACT

The medium-term fatigue behaviour of calf pericardium (similar to the one used to manufacture cardiac bioprostheses valve leaflets) has been studied. 96 samples were tested under fatigue subjecting them to biaxial stress at 1 Hz frequency for 5000 cycles, in 4 series of 24 samples, at several supra-physiological mean pressures and pressure amplitudes. Short-term damage parameters such as the accumulated energy consumption in 10 cycles (E10) and medium-term ones after 5000 cycles like total energy consumption (Et) and maximum displacement of the membrane (Dt) have been evaluated. E10 showed exponential growing tendency with pressure and linear tendency with pressure amplitude when only one parameter curve was plotted. Similar results were found when analysing Et and Dt. Linear correlation models were established between E10 and Et and E10 and Dt. Similar results were achieved in the four series, with excellent determination coefficients. The results confirm that the fatigue behaviour from the very first cycles of the test can predict the medium-term behaviour of the tissue by means of measurement of suitable damage markers. The tendencies observed between the parameters seem to show that the results could have been the same ones if the test had been performed at physiological pressures and amplitudes. This work opens the door to a non-destructive test of the tissue prior to employ it to manufacture valve leaflets.


Subject(s)
Materials Testing , Mechanical Phenomena , Pericardium , Animals , Biomechanical Phenomena , Cattle , Linear Models , Pressure , Time Factors
2.
J Biomed Mater Res A ; 89(2): 336-44, 2009 May.
Article in English | MEDLINE | ID: mdl-18431770

ABSTRACT

The mechanical behavior of the young bull pericardium in a fatigue test has been studied. This material is a similar tissue to those used in valve leaflet construction for a cardiac bioprosthesis. The consumed energy on each test was evaluated and afterwards used as a predictor of the biomaterial strength. Two-hundred and nine samples were tested to cyclical fatigue. The cut-off point to determine the sample quality was whether or not they resisted at least 4500 cycles. Only 22 samples withstood over that point (10.52%). The samples were classified according to their fatigue behavior in excellent, undefined and unsuitable. By using as a reference the consumed energy in the first 25 cycles, we could distinguish correctly (between 93.2 and 96.1%) the unsuitable material and most of the excellent (between 78.1 and 95.2%). From the rejected material 77% was really detachable and from the accepted, only 50% was excellent, with an equal methodology. The receiver operating characteristics curve was employed to establish decision levels when selecting samples, being 0.85 the best area (theoretical maximum value of 1). It is concluded that the energy wasted is a good predictor of the strength of the tissue. More than 90% of the unsuitable material and 50% of the excellent material (5% of all the material) is detected with this method.


Subject(s)
Bioprosthesis , Heart Valve Prosthesis , Materials Testing , Animals , Biomechanical Phenomena , Cattle , ROC Curve
3.
J Appl Biomater Biomech ; 6(1): 55-62, 2008.
Article in English | MEDLINE | ID: mdl-20740447

ABSTRACT

The tearing of the fibers of biomaterials employed in implants or bioprostheses leads to early the failure of these devices. The purpose of this study was to determine the force necessary to propagate a tear in a biological tissue, calf pericardium, when sutured. We analyzed the outcome of 230 trials. There was a loss of resistance to tearing in samples sutured edge-to-edge as compared to unsutured control samples. This loss was not observed when the suture was preceded by an intact or protective zone. The values corresponding to the tearing force for an overlapping suture, especially when sewn with Gore-Tex(R), were higher than those obtained in controls. This study confirms the deleterious effect of the edge-to-edge suture, which can be minimized by protecting the suture, and the excellent behavior of the overlapping suture.

4.
J Mater Sci Mater Med ; 18(5): 715-24, 2007 May.
Article in English | MEDLINE | ID: mdl-17136602

ABSTRACT

We studied the changes in energy consumption of samples of calf pericardium, when joined or not joined by sutures and adhesives, by means of hysteretic cycles. Sixty-four samples were subsequently subjected to tensile stress until rupture. An overlapping suture sewn in the form of a rectangle presented an acceptable mean resistance to rupture of over 10 MPa, although lower than the mean values in an unsutured control series where the mean resistance surpassed 15 MPa. The contribution of an acrylic adhesive to the resistance to rupture was negligible. The sutured samples that were reinforced with adhesives and had not been subjected to hysteretic cycles prior to rupture showed an anisotropic behavior. This behavior appeared to be lost in all the samples that underwent hysteretic cycles. We found an inflection point in the stress/strain curve following the stepwise increase in the load, with a value greater than and proximate to the final load applied. This inflection should be analyzed by means of microscopy. Finally, the mathematical relationship between the energy consumed and the stress applied, the strain or deformation produced and the number of cycles of hysteresis to which the samples were subjected was established as the ultimate objective of this study. The bonding systems provoked a greater consumption of energy, with the greatest consumption corresponding to the first cycle in all the series assayed. An equation relating the energy consumption in a sample to the number of hysteretic cycles to which it was subjected was obtained. Its asymptote on the x-axis indicates the energy consumption for a theoretical number of cycles, making it possible to estimate the durability of the sample.


Subject(s)
Biocompatible Materials , Bioprosthesis , Heart Valve Prosthesis , Animals , Biomechanical Phenomena , Cattle , In Vitro Techniques , Materials Testing , Prosthesis Failure , Sutures , Tensile Strength , Thermodynamics , Tissue Adhesives
5.
Acta Biomater ; 2(2): 213-9, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16701880

ABSTRACT

We have performed a comparative analysis of glutaraldehyde-preserved ostrich pericardium, as a novel biomaterial, with bovine pericardium. The biochemical characteristics (histology, water content, amino acid composition, and collagen and elastin contents), mechanical properties, and in vivo calcification in a subcutaneous rat model were examined. Ostrich pericardium is slightly thinner and shows a higher water content (70+/-2% vs. 62+/-2%) than bovine pericardium. Additionally, ostrich pericardium presents 1.6-fold lower elastin content and a lower percentage of collagen in reference to the total protein content (68+/-2% vs. 76+/-2%). However, ostrich pericardium shows better mechanical properties, with higher tensile stress at rupture (32.4+/-7.5 vs. 11.5+/-4.6) than calf pericardium. In vivo calcification studies in a rat subcutaneous model show that ostrich pericardium is significantly less calcified than bovine pericardium (23.95+/-13.30 vs. 100.10+/-37.36 mg/g tissue) after 60 days of implantation. In conclusion, glutaraldehyde-stabilized ostrich pericardium tissue shows better mechanical properties than calf tissue. However, calcium accumulation in implanted ostrich tissue is still too high to consider it a much better alternative to bovine pericardium, and anticalcification treatments should be considered.


Subject(s)
Biocompatible Materials , Pericardium/physiology , Animals , Biomechanical Phenomena , Calcification, Physiologic , Coloring Agents , Elastin/analysis , Glutaral , Organ Preservation/methods , Pericardium/chemistry , Pericardium/cytology , Rats , Struthioniformes
6.
J Appl Biomater Biomech ; 3(2): 67-82, 2005.
Article in English | MEDLINE | ID: mdl-20799226

ABSTRACT

Attempts to replace diseased human valves with prostheses began more than 30 yrs ago. Heart valve prostheses can be broadly classified into mechanical prostheses (made out of non-biological materials) and bioprostheses made out of biological tissue. Biological valves are made from animal tissue bovine pericardium and porcine valves. The use of these tissues became commercially available after the introduction of the glutaraldehyde (GA) fixation technique. GA reacts with tissue proteins to form inter- and intramolecular crosslinks, resulting in improved durability. The advantage of bioprostheses compared with mechanical valves is the freedom from thromboembolism; and therefore, the avoidance of long-term anticoagulation therapy. These prostheses are preferable in elderly people and in patients who do not tolerate anticoagulants. However, tissular calcification and primary tissue failure (caused by the mechanical stress) are the main unresolved problems. The causes of calcification are numerous and, to date, a satisfactory solution to this question has not been found, although chemical treatments with metal cations, diphosphonates and treatments eliminating phospholipids have proved to mitigate calcification. In addition, alterna-tive approaches to GA chemical treatment fixation are being proposed to provide the tissue with greater resistance to this process. Studies are under way using polyepoxy compounds, derivates of amino oleic acid (AOA), agents such as diphenylphosphorylazide, carbodiimide, amino acids etc. Further improvements in fixation techniques, as well as in bioprosthesis design (stentless valves) are being made to improve the durability and functional characteristics of bioprosthetic heart valves. The development of a biomaterial capable of withstanding calcification and mechanical stress, while being as durable as mechanical prostheses, would convert the bioprostheses into the replacement of choice by eliminating the need for anticoagulation therapy.

7.
J Mater Sci Mater Med ; 15(2): 109-15, 2004 Feb.
Article in English | MEDLINE | ID: mdl-15330043

ABSTRACT

We compared the mechanical resistance of 18 samples of calf pericardium bonded with a 100 mm2 overlap, by two types of glues: a cyanoacrylate (Loctite 4011) and a bioadhesive (BioGlue). Comparative tensile testing was also carried out in 40 paired samples, 20 bonded with the cyanoacrylate and 20 unbonded controls. The findings at rupture showed a greater resistance of the calf pericardium glued with cyanoacrylate, with a mean tensile strength of 0.15 MPa vs. 0.04 MPa for the biological glue (p= 0.000). They also demonstrated a loss of resistance of the samples bonded with cyanoacrylate when compared with that of the unbonded other halves of the pairs: 0.20 MPa and 0.27 MPa vs. 19.47 MPa and 24.44 MPa (p < 0.001). The method of selection by means of paired samples made it possible to establish the equations that relate the stress and strain, or deformation, with excellent coefficients of determination (R2). These equations demonstrate the marked elastic behaviour of the bonded samples. Moreover, these findings show the cyanoacrylate to be superior to the biological glue, leading to the examination of the compatibility, inalterability over time and mechanical behaviour of the cyanoacrylate in sutured samples, as well as the study of the anisotropy of the biomaterial when bonded with a bioadhesive.


Subject(s)
Adhesives/chemistry , Cyanoacrylates/chemistry , Animals , Bone Cements/chemistry , Cattle , Extremities , Stress, Mechanical , Tensile Strength
8.
J Biomater Appl ; 18(3): 179-92, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14871044

ABSTRACT

Sutures are the materials presently employed to secure and give shape to the valve leaflets of cardiac bioprostheses. Their high resistance and low degree of elasticity in comparison with the calf pericardium of which the leaflets are made generates internal stresses that contribute to the failure of the bioprostheses. Biological adhesives are bonding materials that have begun to be utilized in surgery, although there is a lack of experience in their use with inert tissues or bioprostheses. We report our study of Loctite 4011, a biological glue composed of a cyanoacrylate that has been employed for medical purposes, in which samples of pericardium bonded with this adhesive were subjected to uniaxial tensile stress. The samples were glued in such a way as to leave an overlap of 1 cm2 between the surfaces of the tissue. The series included 83 samples: 12 tested 24 h after bonding, 17 after 45 days, 17 after 90 days, 19 after 106 days and 18 after 152 days. The samples subjected to deferred trials were preserved using three types of chemical substances: glutaraldehyde, glycerol or saline plus antibiotics. The mean resistance to rupture of the series tested 24 h after gluing was 0.15 MPa (1.47 machine kg). This resistance remained nearly unchanged, regardless of the preservation solution employed, for at least 152 days, the time at which the study ended. The stress-strain curves demonstrated a high degree of elasticity throughout the 152 days, a finding that was not influenced by the preservation solution. This adhesive showed a considerable resistance to tensile stress, although probably insufficient to replace sutures. However, it maintained a surprisingly high degree of elasticity in the samples. Perhaps the time has come to combine these two elements, sutures and adhesives, to improve the elasticity of the structure without a loss of resistance, and increase the durability of bioprostheses.


Subject(s)
Biocompatible Materials , Methacrylates , Tensile Strength , Tissue Adhesives , Animals , Cattle
9.
Biomaterials ; 24(9): 1671-9, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12559827

ABSTRACT

The purpose of this study was to compare the mechanical behavior of calf pericardium, pig pericardium and ostrich pericardium when subjected to tensile testing. Tensile stress was applied to 108 tissue samples, 36 of each type of tissue, until rupture. Groups of three adjacent strips measuring 12 x 2 cm(2) were cut longitudinally. Each group consisted of an unsutured center sample, or control, and the two contiguous samples, that on the right sutured with Gore-Tex at a 90 degrees angle with respect to the longitudinal axis and that on the left sewn with the same suture material at 45 degrees angle. The sutured samples showed a statistically significant loss of resistance (p<0.001) when compared with the corresponding unsutured tissue. The mean stresses at rupture for sutured ostrich pericardium were 21.81 and 20.81 MPa in the samples sewn at 45 degrees and 90 degrees, respectively, higher than those corresponding to unsutured calf and pig pericardium, 14.0 and 11.49 MPa, respectively, at rupture. The analysis of the stress/strain curve shows a smaller difference between sutured and unsutured ostrich pericardium than those observed in the other two biomaterials. These results demonstrate that, in addition to its greater resistance, ostrich pericardium also presents a less pronounced interaction with the suture material. Its capacity to absorb the shearing stress produced by the suture is greater. This report also confirms that the method of selection using paired samples ensures their homogeneity and makes it possible to predict the behavior of a sample by determining that of the other half of the pair.


Subject(s)
Biocompatible Materials , Pericardium/surgery , Animals , Biomechanical Phenomena , Cattle , Polytetrafluoroethylene , Struthioniformes , Swine
10.
J Biomed Mater Res ; 62(1): 73-81, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12124788

ABSTRACT

The mechanical behavior of sutured ostrich pericardium was studied by uniaxial tensile testing. One hundred forty-four tissue specimens were assessed: 96 sutured samples (48 in which a centrally located suture was placed at an angle of 90 degrees with respect to the longitudinal axis, whereas in the remaining 48, a centrally located suture was placed at a 45 degrees angle to the longitudinal axis, in sets of 12 samples each, sewn with sutures made of Gore-Tex, nylon, Prolene, or silk), and 48 unsutured controls. Each group of 24 samples sewn at one angle or the other with the different suture materials was assayed together with a corresponding control group of 12 unsutured samples. The mean tensile strengths in the unsutured controls ranged between 30.16 MPa and 43.42 MPa, whereas those of the sutured sets ranged from 14.68 MPa to 21.91 MPa. The latter presented a statistically significant loss of resistance (p < 0.01) when compared with the unsutured tissue samples. The angle of the suture with respect to the longitudinal axis influenced the degree of shear stress produced by the suture, as well as the behavior of the different suture materials used. The set of samples sewn with Prolene appeared to be that most sensitive to changes in the angle of the suture, whereas tissue sewn at a 45 degrees angle with Gore-Tex presented lower shear stress values in comparison with samples in which the other three materials were used. A method of tissue selection based on morphological and mechanical criteria was used to ensure the homogeneity of the results in such a way that the coefficients of determination (R2) for the stress/strain curve fitting equation ranged between 0.888 and 0.995. This excellent fit made it possible, applying regression analysis, to predict the mechanical behavior of a specimen by determining that of a contiguous tissue sample. Thus, it should be possible, at least theoretically, to characterize the behavior of a specific region or zone of the biomaterial. In conclusion, ostrich pericardium exhibits strong resistance to rupture, even when sutured. The selection method used ensures the homogeneity of the samples and, thus, of the results. The angle of the suture with respect to the longitudinal axis, where the load is centered, determines the shear stress produced by the suture and the mechanical behavior of each suture material.


Subject(s)
Pericardium/injuries , Sutures/adverse effects , Animals , Biocompatible Materials , Biomechanical Phenomena , Linear Models , Polypropylenes , Polytetrafluoroethylene , Rupture , Stress, Mechanical , Struthioniformes , Suture Techniques , Sutures/standards , Tensile Strength
11.
J Mater Sci Mater Med ; 13(5): 477-83, 2002 May.
Article in English | MEDLINE | ID: mdl-15348600

ABSTRACT

The mechanical behavior of porcine pericardium was analyzed to compare it with that of calf pericardium employed in valve leaflets for cardiac bioprostheses. Forty samples of pericardium were subjected to uniaxial tensile testing, 20 as controls and 20 exposed to loads increasing stepwise from 0.5 to 1.5 kg and to 3 kg, and thereafter to rupture, with a return to zero load between each new increment. Another 20 samples were used in biaxial tensile tests involving the application of loads increasing stepwise (to 0.5, 1.5, 3 and 5 kg) until rupture with a zero-load interval before each increment. The ultimate stresses were very similar, showing no statistically significant differences when compared in terms of type of assay, controls and study samples or region of pericardial tissue being tested. In the stepwise biaxial assays, the mean stresses at rupture were also very homogeneous. Using morphological and mechanical criteria for sample selection, it was possible to obtain mathematical fits for the stress/strain relationship, with excellent coefficients of determination. The relationship between the area under the stress/strain curve and the load applied or the strain observed was also studied in the biaxial assay as an equivalent to the cycles of hysteresis produced in the test. The increment in the area under the curve (the energy consumed) may be a good parameter for assessing the changes in the collagen fiber architecture of the pericardial tissue, changes that may help to detect early failure.

12.
J Mater Sci Mater Med ; 13(4): 381-8, 2002 Apr.
Article in English | MEDLINE | ID: mdl-15348613

ABSTRACT

The authors analyzed the mechanical behavior of the calf pericardium employed in the construction of valve leaflets for cardiac bioprostheses. Forty samples of pericardium were subjected to uniaxial tensile testing, 20 as controls and 20 exposed to loads increasing stepwise until rupture, with a return to zero load between each new increment. Another 20 samples were used similarly in biaxial tensile tests involving loads increasing stepwise until rupture, again returning to zero load between steps. The ultimate stresses in the uniaxial study were very similar and were not influenced by the region of pericardial tissue being tested or the increments in load to which the tissue was exposed. The mean stresses at rupture in the stepwise biaxial assays were significantly greater (p<0.01). Using morphological and mechanical criteria for sample selection, it was possible to obtain mathematical fits for the stress/strain relationship in both types of assays, with excellent coefficients of determination (R (2)>0.90). In uniaxial tests in which the selection criteria were not applied, the correlation improved as the load increased, a phenomenon that did not occur in the biaxial studies. The values varied throughout the different cycles, adopting exponential forms when the strain was greatest. These variations, which demonstrate that the increase in the energy consumed is a function of the stress applied and of the strain produced, should be good parameters for assessing the changes in the collagen fiber architecture of pericardial tissue subjected to cyclic stress, and may help to detect early failure.

13.
J Biomater Appl ; 17(2): 85-103, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12557996

ABSTRACT

The authors study the mechanical behavior of calf pericardium employed in the construction of cardiac valve leaflets when subjected to telescoping suture, followed by tensile stress until rupture. One hundred twenty pericardial tissue samples were employed, 60 cut from root-to-apex and another 60 cut in transverse direction. Each of these two groups consisted of 12 control samples that were left unsutured and four sets of 12 samples each that were rejoined by telescoping suture using silk, Prolene, nylon or Gore-Tex., and subjected to tensile stress. At the rupture of the sutured tissues, the tensile stress of the suture materials ranged between 57.54 MPa for the series sewn lengthwise with Gore-tex and 114.08 MPa for the series sewn crosswise with silk. At these levels of stress, the deformation of the suture thread was much less marked than that of the calf pericardium, and internal stresses were produced that were difficult for the biomaterial to absorb. There was a loss of real load in all the sutured series when the observed resistance to rupture, expressed in kilograms, was compared with the estimated value. This loss of resistance did not invalidate the telescoping suture technique since the resistance to rupture was still much greater than that associated with suturing the two edges of the cut pericardium together. This report confirms the deleterious role of the shear force generated in the pericardium by the suture.


Subject(s)
Biocompatible Materials , Pericardium/physiology , Sutures , Animals , Bioprosthesis , Cattle , In Vitro Techniques , Materials Testing
14.
J Biomater Appl ; 17(2): 105-23, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12557997

ABSTRACT

Ostrich pericardium, sutured using a telescoping or overlapping technique, was studied to determine its mechanical behavior. From each of 12 pericardial sacs, four contiguous strips were cut longitudinally, from root to apex, and another four contiguous strips were cut in transverse direction. One of the strips in each set of four was used as an unsutured control and the remaining three were sutured by overlapping 0.5 cm of the tissue and sewing with Gore-tex, Prolene or Pronova. These 96 samples were then subjected to tensile testing along their major axes until rupture. The tensile stresses recorded in the suture materials at the moment tears appeared in the pericardium ranged between 55.99 MPa and 70.23 MPa for Gore-tex in samples cut in the two directions. Shear stress became ostensible at 56 MPa, with clearly evident tears. However, microfracture of the collagen fibers must be produced at much lower stress levels. The comparison of the resistance in kilograms (machine-imposed), without taking into account the sections in which the load was applied, demonstrated only a slight loss of load when the telescoping suture was employed in ostrich pericardium samples. Ostrich pericardium may continue to be an alternative biological material for the construction of heart valve leaflets.


Subject(s)
Biocompatible Materials , Pericardium/physiology , Sutures , Animals , Bioprosthesis , Materials Testing , Struthioniformes
15.
Biomaterials ; 22(20): 2759-67, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11545310

ABSTRACT

Calcification and mechanical failure are the major causes of the loss of cardiac bioprostheses. The chemical treatments used to stabilize the tissue employed are considered to play a fundamental role in the development of these two phenomena, although the problem is multifactorial and the underlying causes are yet to be fully identified. Currently, there is an ongoing search for chemical treatments capable of reducing or eliminating the process of calcification while preserving the mechanoelastic characteristics of the tissue. One of the approaches to this effort is the elimination of the phospholipid component from the biological tissue employed in prosthesis construction. There is evidence that this component may be responsible for the precipitation of calcium salts. The present study compares two delipidating chemical treatments involving chloroform/methanol and sodium dodecyl sulfate (SDS) with the use of glutaraldehyde (GA) alone. For this purpose, porcine pericardial tissue was subjected to tensile strength testing employing a hydraulic simulator. A total of 234 samples were studied 90 treated with GA, 72 treated with chloroform/methanol and 72 treated with SDS. The mean breaking strength was significantly higher in the samples treated with GA (between 43.29 and 63.01 MPa) when compared with those of tissue treated with chloroform/methanol (29.92-42.30 MPa) or with SDS (13.49-19.06 MPa). In a second phase of the study, selection criteria based on morphological and mechanical factors were applied to the pericardial membranes employing a system of paired samples. The mathematical analysis of the findings in one fragment will aid in determining the mechanical behavior of its adjacent twin sample. In conclusion, the anticalcification chemical treatments tested in the experimental model conferred a lesser mechanical resistance than that obtained with GA. On the other hand, the utilization of paired samples was found to be useful in the prediction of the mechanical behavior of porcine pericardial tissue. Nevertheless, in order for our method of selection to be considered the most adequate approach, it will be necessary to validate these findings in dynamic studies involving a real, functional model.


Subject(s)
Pericardium , Animals , Materials Testing , Swine , Tensile Strength
16.
J Biomater Appl ; 16(1): 47-67, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11475359

ABSTRACT

A hydraulic stress simulator was employed to study the mechanical behavior of the calf pericardium used in the construction of cardiac valve leaflets. One hundred eighty pairs of tissue samples were subjected to tensile testing to rupture. One of the two samples from each of 144 pairs (four series of 36 pairs each) was sutured with commercially available threads made of nylon, silk, Prolene or Gore-Tex, while the other sample in each of these pairs was left unsewn. The remaining 36 pairs were employed as controls in which neither of the two samples was subjected to suturing. The sutured tissue samples showed a significant decrease in tensile strength at rupture (range: 11.81 to 26.04 MPa) when compared with unsutured samples (range: 39.38 to 87.96 MPa; p < 0.01). The application of morphological and mechanical selection criteria to maximize the homogeneity of the samples provided excellent fit with respect to the stress/strain curves. This method made it possible to carry out a predictive study of the mechanical behavior of a sutured sample, based on that observed in the corresponding unsutured fragment. The interaction of the different suture materials with the pericardial tissue was also assessed by comparing the mechanical behavior of the sutured samples with that of the control samples. At stresses of less than 0.8 MPa, samples sewn with Gore-Tex were found to show the least difference with respect to the controls, indicating that this material presented the lowest degree of interaction with the pericardium. In conclusion, the degree of the loss of resistance to tearing of the sutured samples is of no value in the selection of the optimal suture material. The selection process applied makes it possible to predict the mechanical behavior in response to suturing of a given unsewn tissue specimen by determining that of its sutured mate. The similarity between the findings in samples sewn with Gore-Tex and in the unsutured controls indicates a lesser degree of interaction between the suture material and the pericardium employed in the construction of cardiac valve leaflets.


Subject(s)
Biocompatible Materials , Bioprosthesis , Heart Valve Prosthesis , Pericardium , Sutures , Animals , Cattle , Materials Testing
17.
J Biomater Appl ; 16(1): 68-90, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11475360

ABSTRACT

Using a hydraulic stress simulator, the mechanical behavior of the porcine pericardium used in the construction of cardiac valve leaflets was characterized following the same procedure employed with calf pericardium in Part 1 of this study. One hundred fifty pairs of tissue samples were subjected to tensile testing to rupture. One of the two samples from each of 120 pairs (four series of 30 pairs each) was saturated with commercially available threads made of nylon, silk, Prolene or Gore-Tex, while the other sample in each of these pairs was left unsewn. The remaining 30 pairs were employed as controls in which neither of the two samples was subjected to suturing. The sutured tissue samples showed a significant decrease in tensile strength at rupture (range: 11.61 to 21.22 MPa) when compared with unsutured samples (range: 50.80 to 89.45 MPa; p < 0.01). When these results were compared with their equivalent in calf pericardium, no significant differences were observed (the mean values at rupture in calf pericardium ranged between 211.61 MPa and 26.04 MPa). Again, the application of morphological and mechanical selection criteria to ensure the homogeneity of the samples provided excellent fit with respect to the stress/strain curves. The interaction of the different suture materials with the pericardial tissue was also assessed by comparing the mechanical behavior of the sutured samples with that of the control samples. At the working stress of a cardiac valve leaflet, 0.250 MPa, samples sewn with Gore-Tex were found to show the least difference in behavior with respect to the controls, indicating that this material presented the lowest degree of interaction with the pericardium. In conclusion, the suture clearly has deleterious effects on the resistance of both calf and porcine pericardium, which showed no statistically significant differences in terms of resistance to rupture when their respective sutured or unsutured samples were compared, except in the case of porcine pericardium sewn with silk, which presented lower resistance to rupture in all the zones studied. These findings suggest that the hypothesis that porcine pericardium is less resistant is erroneous. The Gore-Tex suture also presented a lower degree of interaction with the porcine pericardium, with values similar to the working stress of a cardiac valve leaflet. This methodology and the results should be evaluated in dynamic studies, such as fatigue testing, that not only confirm the resistance of the material but establish the durability of the samples being assayed.


Subject(s)
Biocompatible Materials , Bioprosthesis , Heart Valve Prosthesis , Pericardium , Animals , Materials Testing , Swine
18.
J Mater Sci Mater Med ; 12(8): 665-71, 2001 Aug.
Article in English | MEDLINE | ID: mdl-15348235

ABSTRACT

The durability of existing calf pericardium bioprostheses is limited by phenomena such as mechanical stress and calcification, the factors most frequently implicated in valve failure. Varying the preferred direction of the collagen fibers influences the mechanical behavior of the pericardial membrane. Given this possible variation, a strict control of the selection of the biomaterial employed in the construction of valve leaflets is essential, but a reliable method of selection has yet to be established. This study describes the development of a new system of in vitro selection involving a hydraulic simulator that reproduces the mechanical behavior of pericardial membranes subjected to the stress of continuous flow. By combining morphological criteria such as thickness and homogeneity with those of mechanical behavior, and by selecting paired samples from different parts of the pericardium, we obtained excellent mathematical fits. Linear regression analysis provided the mode of predicting the tensile strength in a given sample when this value had been determined in its twin. The upper zones of calf pericardium, corresponding to either right or left ventricle but at a distance from ligamentous structures, showed the best mean results at rupture (60 MPa) and permitted the most reliable prediction. The expected stress for an elongation of 30% was 1.12 MPa, as was previously observed, with a 95% confidence interval of between 1.11 and 1.14 MPa. These trials, together with the careful selection of the pairs, should help to establish definitive selection criteria.

19.
J Mater Sci Mater Med ; 12(5): 425-30, 2001 May.
Article in English | MEDLINE | ID: mdl-15348282

ABSTRACT

The durability of cardiac bioprostheses is limited fundamentally by structural failure due to mechanical fatigue and calcification. In the present report, we analyze, using an in vitro hydraulic simulator to test tensile strength, the mechanical behavior of porcine pericardium for the purpose of establishing the criteria for selecting the biomaterial, taking into account both morphological criteria (thickness and homogeneity of the specimens) and mechanical criteria (stress at breaking point), using the epidemiological model of paired samples. The stress at breakage was found to range widely from 24.07 MPa to 100.29 MPa, although we observed no statistically significant differences when comparing the mean results in the different regions and zones of the pericardium being studies. The application of the selection criteria in the present series resulted in an excellent mathematical fit in terms of the stress/elongation (R2 > 0.95), making it possible to establish, by means of linear regression, the prediction of the tensile strength in one zone on the basis of the values observed in its paired specimen.

20.
J Biomater Appl ; 15(1): 47-64, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10972159

ABSTRACT

Using morphological and mechanical criteria and applying a method involving paired samples that is widely employed in epidemiology, we obtained an excellent prediction of the mechanical behavior of the calf pericardium used in the construction of cardiac bioprostheses. The method of selection employed in this study may be a highly useful tool for guaranteeing the mechanical resistance of calf pericardium, with a very low level of error.


Subject(s)
Biocompatible Materials/chemistry , Bioprosthesis , Heart Valve Prosthesis , Pericardium/physiology , Prosthesis Design , Animals , Biomechanical Phenomena , Cattle , Confidence Intervals , Elasticity , Forecasting , Hydrostatic Pressure , Least-Squares Analysis , Materials Testing , Prosthesis Failure , Regression Analysis , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...