Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928196

ABSTRACT

LPA3 receptors were expressed in TREx HEK 293 cells, and their signaling and phosphorylation were studied. The agonist, lysophosphatidic acid (LPA), increased intracellular calcium and ERK phosphorylation through pertussis toxin-insensitive processes. Phorbol myristate acetate, but not LPA, desensitizes LPA3-mediated calcium signaling, the agonists, and the phorbol ester-induced LPA3 internalization. Pitstop 2 (clathrin heavy chain inhibitor) markedly reduced LPA-induced receptor internalization; in contrast, phorbol ester-induced internalization was only delayed. LPA induced rapid ß-arrestin-LPA3 receptor association. The agonist and the phorbol ester-induced marked LPA3 receptor phosphorylation, and phosphorylation sites were detected using mass spectrometry. Phosphorylated residues were detected in the intracellular loop 3 (S221, T224, S225, and S229) and in the carboxyl terminus (S321, S325, S331, T333, S335, Y337, and S343). Interestingly, phosphorylation sites are within sequences predicted to constitute ß-arrestin binding sites. These data provide insight into LPA3 receptor signaling and regulation.


Subject(s)
Lysophospholipids , Receptors, Lysophosphatidic Acid , Signal Transduction , Humans , beta-Arrestins/metabolism , Binding Sites , Calcium Signaling , HEK293 Cells , Lysophospholipids/metabolism , Phosphorylation , Receptors, Lysophosphatidic Acid/metabolism
2.
Int J Mol Sci ; 25(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38791546

ABSTRACT

Lysophosphatidic acid (LPA) type 3 (LPA3) receptor mutants were generated in which the sites detected phosphorylated were substituted by non-phosphorylatable amino acids. Substitutions were made in the intracellular loop 3 (IL3 mutant), the carboxyl terminus (Ctail), and both domains (IL3/Ctail). The wild-type (WT) receptor and the mutants were expressed in T-REx HEK293 cells, and the consequences of the substitutions were analyzed employing different functional parameters. Agonist- and LPA-mediated receptor phosphorylation was diminished in the IL3 and Ctail mutants and essentially abolished in the IL3/Ctail mutant, confirming that the main phosphorylation sites are present in both domains and their role in receptor phosphorylation eliminated by substitution and distributed in both domains. The WT and mutant receptors increased intracellular calcium and ERK 1/2 phosphorylation in response to LPA and PMA. The agonist, Ki16425, diminished baseline intracellular calcium, which suggests some receptor endogenous activity. Similarly, baseline ERK1/2 phosphorylation was diminished by Ki16425. An increase in baseline ERK phosphorylation was detected in the IL3/Ctail mutant. LPA and PMA-induced receptor interaction with ß-arrestin 2 and LPA3 internalization were severely diminished in cells expressing the mutants. Mutant-expressing cells also exhibit increased baseline proliferation and response to different stimuli, which were inhibited by the antagonist Ki16425, suggesting a role of LPA receptors in this process. Migration in response to different attractants was markedly increased in the Ctail mutant, which the Ki16425 antagonist also attenuated. Our data experimentally show that receptor phosphorylation in the distinct domains is relevant for LPA3 receptor function.


Subject(s)
Lysophospholipids , Receptors, Lysophosphatidic Acid , Signal Transduction , Humans , Phosphorylation , Receptors, Lysophosphatidic Acid/metabolism , Receptors, Lysophosphatidic Acid/genetics , HEK293 Cells , Lysophospholipids/metabolism , Calcium/metabolism , Endocytosis , Mutation
3.
Int J Mol Sci ; 24(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38069285

ABSTRACT

The function of the α1B-adrenergic receptor phosphorylation sites previously detected by mass spectrometry was evaluated by employing mutants, substituting them with non-phosphorylatable amino acids. Substitution of the intracellular loop 3 (IL3) sites did not alter baseline or stimulated receptor phosphorylation, whereas substitution of phosphorylation sites in the carboxyl terminus (Ctail) or both domains (IL3/Ctail) markedly decreased receptor phosphorylation. Cells expressing the IL3 or Ctail receptor mutants exhibited a noradrenaline-induced calcium-maximal response similar to those expressing the wild-type receptor, and a shift to the left in the concentration-response curve to noradrenaline was also noticed. Cells expressing the IL3/Ctail mutant exhibited higher apparent potency and increased maximal response to noradrenaline than those expressing the wild-type receptor. Phorbol ester-induced desensitization of the calcium response to noradrenaline was reduced in cells expressing the IL3 mutant and abolished in cells in which the Ctail or the IL3/Ctail were modified. In contrast, desensitization in response to preincubation with noradrenaline was unaffected in cells expressing the distinct receptor mutants. Noradrenaline-induced ERK phosphorylation was surprisingly increased in cells expressing IL3-modified receptors but not in those expressing receptors with the Ctail or IL3/Ctail substitutions. Our data indicate that phosphorylation sites in the IL3 and Ctail domains mediate and regulate α1B-adrenergic receptor function. Phorbol ester-induced desensitization seems to be closely associated with receptor phosphorylation, whereas noradrenaline-induced desensitization likely involves other elements.


Subject(s)
Calcium , Norepinephrine , Phosphorylation , Calcium/metabolism , Norepinephrine/pharmacology , Phorbol Esters , Receptors, Adrenergic/metabolism
4.
Arch Med Res ; 53(5): 451-460, 2022 07.
Article in English | MEDLINE | ID: mdl-35835604

ABSTRACT

The G protein-coupled receptors (GPCRs) are plasma membrane proteins that function as sensors of changes in the internal and external milieux and play essential roles in health and disease. They are targets of hormones, neurotransmitters, local hormones (autacoids), and a large proportion of the drugs currently used as therapeutics and for "recreational" purposes. Understanding how these receptors signal and are regulated is fundamental for progress in areas such as physiology and pharmacology. This review will focus on what is currently known about their structure, the molecular events that trigger their signaling, and their trafficking to endosomal compartments. GPCR phosphorylation and its role in desensitization (signaling switching) are also discussed. It should be mentioned that the volume of information available is enormous given the large number and variety of GPCRs. However, knowledge is fragmentary even for the most studied receptors, such as the adrenergic receptors. Therefore, we attempt to present a panoramic view of the field, conscious of the risks and limitations (such as oversimplifications and incorrect generalizations). We hope this will provoke further research in the area. It is currently accepted that GPCR internalization plays a role signaling events. Therefore, the processes that allow them to internalize and recycle back to the plasma membrane are briefly reviewed. The functions of cytoskeletal elements (mainly actin filaments and microtubules), the molecular motors implicated in receptor trafficking (myosin, kinesin, and dynein), and the GTPases involved in GPCR internalization (dynamin) and endosomal sorting (Rab proteins), are discussed. The critical role phosphoinositide metabolism plays in regulating these events is also depicted.


Subject(s)
Endosomes , Receptors, G-Protein-Coupled , Endosomes/metabolism , Hormones/metabolism , Protein Transport , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/physiology
5.
Mol Cell Endocrinol ; 545: 111573, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35065200

ABSTRACT

Free fatty acid receptor 1 phosphorylation sites were studied using mutants, including a) a mutant with T215V in the third intracellular loop (3IL), b) another with changes in the carboxyl terminus (C-term): T287V, T293V, S298A, and c) a mutant with all of these changes (3IL/C-term). Agonist-induced increases in intracellular calcium were similar between cells expressing wild-type or mutant receptors. In contrast, agonist-induced FFA1 receptor phosphorylation was reduced in mutants compared to wild type. Phorbol ester-induced FFA1 receptor phosphorylation was rapid and robust in cells expressing the wild-type receptor and essentially abolished in the mutants. Agonist-induced ERK 1/2 phosphorylation and receptor internalization were decreased in cells expressing the mutant receptors compared to those expressing the wild-type receptor. Our data suggest that the identified sites might participate in receptor phosphorylation, signaling, and internalization.


Subject(s)
Fatty Acids, Nonesterified , Receptors, G-Protein-Coupled/metabolism , Humans , Mutation/genetics , Phosphorylation , Signal Transduction
6.
Int J Mol Sci ; 22(13)2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34201414

ABSTRACT

The lysophosphatidic acid 3 receptor (LPA3) participates in different physiological actions and in the pathogenesis of many diseases through the activation of different signal pathways. Knowledge of the regulation of the function of the LPA3 receptor is a crucial element for defining its roles in health and disease. This review describes what is known about the signaling pathways activated in terms of its various actions. Next, we review knowledge on the structure of the LPA3 receptor, the domains found, and the roles that the latter might play in ligand recognition, signaling, and cellular localization. Currently, there is some information on the action of LPA3 in different cells and whole organisms, but very little is known about the regulation of its function. Areas in which there is a gap in our knowledge are indicated in order to further stimulate experimental work on this receptor and on other members of the LPA receptor family. We are convinced that knowledge on how this receptor is activated, the signaling pathways employed and how the receptor internalization and desensitization are controlled will help design new therapeutic interventions for treating diseases in which the LPA3 receptor is implicated.


Subject(s)
Receptors, Lysophosphatidic Acid/chemistry , Receptors, Lysophosphatidic Acid/metabolism , Animals , Antioxidants/metabolism , Embryo Implantation , Fertility , Humans , Myocardium/metabolism , Neoplasms/metabolism , Phosphorylation , Signal Transduction
7.
Eur J Pharmacol ; 889: 173595, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32986985

ABSTRACT

Human embryonic kidney (HEK) 293 cells were co-transfected with plasmids for the expression of mCherry fluorescent protein-tagged FFA4 receptors and the enhanced green fluorescent protein-tagged Rab proteins involved in retrograde transport and recycling, to study their possible interaction through Förster Resonance Energy Transfer (FRET), under the action of agents that induce FFA4 receptor phosphorylation and internalization through different processes, i.e., the agonist, docosahexaenoic acid, the protein kinase C activator phorbol myristate acetate, and insulin. Data indicate that FFA4 receptor internalization varied depending on the agent that induced the process. Agonist activation (docosahexaenoic acid) induced an association with early endosomes (as suggested by interaction with Rab5) and rapid recycling to the plasma membrane (as indicated by receptor interaction with Rab4). More prolonged agonist stimulation also appears to allow the FFA4 receptors to interact with late endosomes (interaction with Rab9), slow recycling (interaction with Rab 11), and target to degradation (Rab7). Phorbol myristate acetate, triggered a rapid association with early endosomes (Rab5), slow recycling to the plasma membrane (Rab11), and some receptor degradation (Rab7). Insulin-induced FFA4 receptor internalization appears to be associated with interaction with early endosomes (Rab5) and late endosomes (Rab9) and fast and slow recycling to the plasma membrane (Rab4, Rab11). Additionally, we observed that agonist- and PMA-induced FFA4 internalization was markedly reduced by paroxetine, which suggests a possible role of G protein-coupled receptor kinase 2.


Subject(s)
Docosahexaenoic Acids/metabolism , Insulin/metabolism , Receptors, G-Protein-Coupled/metabolism , Tetradecanoylphorbol Acetate/metabolism , rab GTP-Binding Proteins/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Docosahexaenoic Acids/pharmacology , HEK293 Cells , Humans , Insulin/pharmacology , Protein Binding/drug effects , Protein Binding/physiology , Protein Isoforms/metabolism , Tetradecanoylphorbol Acetate/pharmacology
8.
Eur J Pharmacol ; 885: 173423, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32750368

ABSTRACT

In a cell line, stably expressing α1A-adrenoceptors fused to the mCherry red fluorescent protein, noradrenaline, methoxamine, and oxymetazoline induced concentration-dependent increases in intracellular calcium. All of these agents increase α1A-adrenoceptor phosphorylation and internalization. Transient co-expression of these receptors with Rab proteins tagged with the enhanced Green Fluorescent Protein was employed to estimate α1A-adrenoceptor-Rab interaction using Förster Resonance Energy Transfer. Noradrenaline and methoxamine increased α1A-adrenoceptor interaction with Rab5 and Rab7 but did not modify it with Rab9. Oxymetazoline induced adrenoceptor interaction with Rab5 and Rab9 and only an insignificant increase in Rab7 signal. Phorbol myristate acetate increased α1A-adrenoceptor interaction with Rab5 and Rab9 but did not modify it with Rab7. The agonists and the active phorbol ester, all of which induce receptor phosphorylation and internalization, favor receptor interaction with Rab5, i.e., association with early endosomes. Cell stimulation with phorbol myristate acetate induced the α1A-adrenoceptors to interact with the late endosomal marker, Rab9, suggesting that the receptors are directed to slow recycling endosomes once they have transited to the Trans-Golgi network to be retrieved to the plasma membrane. The agonists noradrenaline and methoxamine likely induce a faster recycling and might direct some of the adrenoceptors toward degradation and/or very slow recycling to the plasma membrane. Oxymetazoline produced a mixed pattern of interaction with the Rab proteins. These data indicate that α1A-adrenoceptor agonists can trigger different vesicular traffic and receptor fates within the cells.


Subject(s)
Adrenergic alpha-1 Receptor Agonists/pharmacology , Phorbol Esters/pharmacology , Receptors, Adrenergic, alpha-1/drug effects , rab GTP-Binding Proteins/drug effects , Calcium/metabolism , Cell Line , Endosomes/drug effects , Humans , Luminescent Proteins , Methoxamine/pharmacology , Norepinephrine/pharmacology , Oxymetazoline/pharmacology , Phosphorylation , Tetradecanoylphorbol Acetate/pharmacology , rab5 GTP-Binding Proteins/drug effects , trans-Golgi Network/drug effects , Red Fluorescent Protein
9.
Cell Signal ; 72: 109636, 2020 08.
Article in English | MEDLINE | ID: mdl-32283254

ABSTRACT

The Wnt signaling pathway is a crucial regulator of the intestinal epithelium homeostasis and is altered in most colon cancers. While the role of aberrant canonical, ß-catenin-dependent Wnt signaling has been well established in colon cancer promotion, much less is known about the role played by noncanonical, ß-catenin-independent Wnt signaling in this type of cancer. This work aimed to characterize the noncanonical signal transduction pathway in colon cancer cells. To this end, we used the prototype noncanonical ligand, Wnt5a, in comparison with Wnt3a, the prototype of a canonical ß-catenin activating ligand. The analysis of the expression profile of Wnt receptors in colon cancer cell lines showed a clear increase in both level expression and variety of Frizzled receptor types expressed in colon cancer cells compared with non-malignant cells. We found that Wnt5a activates a typical Wnt/Ca++ - noncanonical signaling pathway in colon malignant cells, inducing the hyperphosphorylation of Dvl1, Dvl2 and Dvl3, promoting Ca++ mobilization as a result of phospholipase C (PLC) activation via pertussis toxin-sensitive G-protein, and inducing PLC-dependent cell migration. We also found that while the co-receptor Ror2 tyrosine kinase activity is not required for Ca++ mobilization-induced by Wnt5a, it is required for the inhibitory effects of Wnt5a on the ß-catenin-dependent transcriptional activity. Unexpectedly, we found that although the prototype canonical Wnt3a ligand was unique in stimulating the ß-catenin-dependent transcriptional activity, it also simultaneously activated PLC, promoted Ca++ mobilization, and induced Rho kinase and PLC-dependent cell migration. Our data indicate, therefore, that a Wnt ligand can activate at the same time the so-called Wnt canonical and noncanonical pathways inducing the formation of complex signaling networks to integrate both pathways in colon cancer cells.


Subject(s)
Colonic Neoplasms/metabolism , Wnt Proteins/metabolism , Wnt Signaling Pathway , Animals , Calcium/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Colonic Neoplasms/pathology , GTP-Binding Proteins/metabolism , Humans , Ligands , Mice , Models, Biological , Pertussis Toxin/pharmacology , Phosphorylation/drug effects , Protein Isoforms/metabolism , Protein Stability/drug effects , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Receptors, Wnt/metabolism , Time Factors , Transcription, Genetic/drug effects , Wnt Signaling Pathway/drug effects , beta Catenin/metabolism
10.
Eur J Cell Biol ; 99(2-3): 151072, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32113707

ABSTRACT

The possibility that glycogen synthase kinase 3 (GSK3) could modulate α1A-adrenergic receptor (α1A-AR) function and regulation was tested employing LNCaP and HEK293 cells transfected to express the enhanced green fluorescent protein-tagged human α1A-AR. Receptor phosphorylation and internalization, intracellular free calcium, α1A-AR-GSK3 colocalization, and coimmunoprecipitation were studied. The effects of the pharmacological GSK3 inhibitor, SB-216763, and the coexpression of a dominant-negative mutant of this kinase, as well as the signaling, desensitization, and internalization of receptors with S229, S258, S352, and S381 substitutions for alanine or aspartate, were also determined. SB-216763 inhibited agonist- and phorbol myristate acetate (PMA)-mediated α1A-AR phosphorylation, reduced oxymetazoline-induced desensitization, and magnified that induced by PMA. Agonists and PMA increased receptor-GSK3 colocalization and coimmunoprecipitation. Expression of a dominant-negative GSK3 mutant reduced agonist- but not PMA-induced receptor internalization. α1A-AR with the GSK3 putative target sites mutated to alanine exhibited reduced phosphorylation and internalization in response to agonists and increased PMA-induced desensitization. Agonist-induced, but not PMA-induced, receptor-ß arrestin intracellular colocalization was diminished in cells expressing the GSK3 putative target sites mutated to alanine. Our data indicated that GSK3 exerts a dual action on α1A-AR participating in agonist-mediated desensitization and internalization and avoiding PMA-induced desensitization.


Subject(s)
Glycogen Synthase Kinase 3/therapeutic use , Receptors, Adrenergic, alpha-1/drug effects , Glycogen Synthase Kinase 3/pharmacology , Humans
11.
Eur J Pharmacol ; 867: 172846, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31811856

ABSTRACT

Cells expressing eGFP-tagged Rab5 (wild-type or the GDP-Rab5 mutant) and the DsRed-tagged α1B-adrenergic receptors were employed and the roles of GRK2 were studied utilizing paroxetine and the dominant-negative mutant of GRK2 (DN-GRK2). The following parameters were studied: a) FRET (as an index of α1B-adrenergic receptor-Rab5 interaction): b) intracellular accumulation of DsRed fluorescence (receptor internalization); c) α1B-adrenergic receptor phosphorylation, and d) noradrenaline-induced increase in intracellular calcium concentration. Noradrenaline increased α1B-adrenergic receptor-Rab5 interaction, which was blocked by paroxetine and by expression of the dominant-negative GRK2 mutant. Similarly, paroxetine and expression of the DN-GRK2 or the GDP-Rab5 mutants markedly decreased receptor internalization, α1B-adrenergic receptor phosphorylation, and attenuated the ability of the adrenergic agonist to induce homologous desensitization (calcium signaling). The S406, 410,412A α1B-adrenergic receptor mutant did not reproduce the actions of GRK2 inhibition. The data indicate that GRK2 and Rab5 play key roles in α1B-adrenergic receptor phosphorylation, internalization, and desensitization. The possibility that Rab5 might form part of a signaling complex is suggested, as well as that GDP-Rab5 might interfere with the ability of GRK2 to catalyze α1B-adrenergic receptor phosphorylation.


Subject(s)
G-Protein-Coupled Receptor Kinase 2/metabolism , Receptors, Adrenergic, alpha-1/metabolism , rab5 GTP-Binding Proteins/metabolism , Adrenergic alpha-1 Receptor Agonists/pharmacology , Fluorescence Resonance Energy Transfer , G-Protein-Coupled Receptor Kinase 2/antagonists & inhibitors , G-Protein-Coupled Receptor Kinase 2/genetics , HEK293 Cells , Humans , Mutation , Norepinephrine/pharmacology , Paroxetine/pharmacology , Phosphorylation/drug effects , rab5 GTP-Binding Proteins/genetics
12.
Life Sci ; 239: 117048, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31730867

ABSTRACT

Benign prostatic hyperplasia (BPH) is an aging-related and progressive disease linked to an up-regulation of α1-adrenoceptors. The participation of EGF receptors (EGFR) in the GPCRs' signalosome has been described but so far data about the contribution of these receptors to prostatic stromal hyperplasia are scanty. We isolated and cultured vimentin-positive prostate stromal cells obtained from BPH patients. According to intracellular Ca2+ measurements, cell proliferation and Western blotting assays, these cultured hyperplastic stromal cells express functional α1-adrenoceptors and EGFR, and proliferate in response to the α1-adrenoceptor agonist phenylephrine. Interestingly, in these cells the inhibition of EGFR signaling with GM6001, CRM197, AG1478 or PD98059 was associated with full blockage of α1-adrenoceptor-mediated cell proliferation, while cell treatment with each inhibitor alone did not alter basal cell growth. Moreover, the co-incubation of AG1478 (EGFR inhibitor) with α1A/α1D-adrenoceptor antagonists showed no additive inhibitory effect. These findings highlight a putative role of EGFR signaling to α1-adrenoceptor-mediated human prostate hyperplasia, suggesting that the inhibition of this transactivation cascade could be useful to reduce BPH progression.


Subject(s)
ErbB Receptors/metabolism , Prostatic Hyperplasia/metabolism , Receptors, Adrenergic, alpha-1/physiology , Adrenergic alpha-1 Receptor Antagonists/metabolism , Adrenergic alpha-1 Receptor Antagonists/pharmacology , Adrenergic alpha-Antagonists/pharmacology , Cell Line , Cell Proliferation/drug effects , ErbB Receptors/antagonists & inhibitors , Humans , Hyperplasia/metabolism , Male , Piperazines/pharmacology , Primary Cell Culture , Prostate/drug effects , Protein Kinase Inhibitors/pharmacology , Receptors, Adrenergic, alpha-1/metabolism , Signal Transduction/drug effects , Stromal Cells
13.
Biochim Biophys Acta Mol Cell Res ; 1866(10): 1509-1519, 2019 10.
Article in English | MEDLINE | ID: mdl-31325464

ABSTRACT

Phosphorylation of the human α1B-adrenergic receptor (fused with the green fluorescent protein) was studied employing the inducible Flp-ln HEK293 T-Rex system for expression. Serine/alanine substitutions were performed in five sites corresponding to those previously identified as phosphorylation targets in the hamster ortholog. Desensitization was decreased in these mutants but receptor phosphorylation was still clearly detected. The protein phosphorylation of the wild-type receptor (fused to the green fluorescent protein) was studied, using mass spectrometry, under baseline and stimulated conditions (noradrenaline or phorbol myristate acetate). Basal phosphorylation was detected at sites located at the intracellular loop 3 and carboxyl terminus, and the number of sites detected increased under agonist activation and stimulation of protein kinase C. The phosphorylation patterns differed under the distinct conditions. Three of the phosphorylation sites detected in this work corresponded to those observed in the hamster receptor. The phosphorylation sites detected included the following: a) at the intracellular loop 3: serines 246, 248, 257, 267, and 277; and threonines 252, 264, and 268, and b) at the carboxyl terminus: serines 396, 400, 402, 406, 423, 425, 427, 455, and 470, and threonines 387, 392, 420, and 475. Our data indicate that complex phosphorylation patterns exist and suggest the possibility that such differences could be relevant in receptor function and subcellular localization.


Subject(s)
Norepinephrine/metabolism , Receptors, Adrenergic, alpha-1/metabolism , Tetradecanoylphorbol Acetate/metabolism , Amino Acid Substitution , Animals , Cricetinae , Extracellular Signal-Regulated MAP Kinases , Green Fluorescent Proteins , HEK293 Cells , Humans , MAP Kinase Signaling System , Phosphorylation , Protein Kinase C/metabolism
14.
Eur J Pharmacol ; 855: 267-275, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31078517

ABSTRACT

FFA4 (Free Fatty Acid receptor 4, previously known as GPR120) is a G protein-coupled receptor that acts as a sensor of long-chain fatty acids, modulates metabolism, and whose dysfunction participates in endocrine disturbances. FFA4 is known to be phosphorylated and internalized in response to agonists and protein kinase C activation. In this paper report the modulation of this fatty acid receptor by activation of receptor tyrosine kinases. Cell-activation with growth factors (insulin, epidermal growth factor, insulin-like growth factor-I, and platelet-derived growth factor) increases FFA4 phosphorylation in a time- and concentration-dependent fashion. This effect was blocked by inhibitors of protein kinase C and phosphoinositide 3-kinase, suggesting the involvement of these kinases in it. FFA4 phosphorylation did not alter agonist-induced FFA4 calcium signaling, but was associated with decreased ERK 1/2 phosphorylation. In addition, insulin, insulin-like growth factor-I, epidermal growth factor, and to a lesser extent, platelet-derived growth factor, induce receptor internalization. This action of insulin, insulin-like growth factor I, and epidermal growth factor was blocked by inhibitors of protein kinase C and phosphoinositide 3-kinase. Additionally, cell treatment with these growth factors induced FFA4-ß-arrestin coimmunoprecipitation. Our results evidenced cross-talk between receptor tyrosine kinases and FFA4 and suggest roles of protein kinase C and phosphoinositide 3-kinase in such a functional interaction.


Subject(s)
Enzyme Activators/pharmacology , Receptor Protein-Tyrosine Kinases/metabolism , Receptors, G-Protein-Coupled/metabolism , beta-Arrestins/metabolism , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , HEK293 Cells , Humans , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation/drug effects , Protein Binding/drug effects , Protein Transport/drug effects , Time Factors
15.
Br J Pharmacol ; 176(14): 2343-2357, 2019 07.
Article in English | MEDLINE | ID: mdl-30740663

ABSTRACT

α1 -Adrenoceptors are seven transmembrane domain GPCRs involved in numerous physiological functions controlled by the endogenous catecholamines, noradrenaline and adrenaline, and targeted by drugs useful in therapeutics. Three separate genes, whose products are named α1A -, α1B -, and α1D - adrenoceptors, encode these receptors. Although the existence of multiple α1 -adrenoceptors has been acknowledged for almost 25 years, the specific functions regulated by each subtype are still largely unknown. Despite the limited comprehension, the identification of a single class of subtype-selective ligands for the α1A - adrenoceptors, the so-called α-blockers for prostate dysfunction, has led to major improvement in therapeutics, demonstrating the need for continued efforts in the field. This review article surveys the tissue distribution of the three α1 -adrenoceptor subtypes in the cardiovascular system, genitourinary system, and CNS, highlighting the functions already identified as mediated by the predominant activation of specific subtypes. In addition, this review covers the recent advances in the understanding of the molecular mechanisms involved in the regulation of each of the α1 -adrenoceptor subtypes by phosphorylation and interaction with proteins involved in their desensitization and internalization. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.


Subject(s)
Receptors, Adrenergic, alpha-1/metabolism , Animals , Humans
16.
Cell Signal ; 53: 374-389, 2019 01.
Article in English | MEDLINE | ID: mdl-30419287

ABSTRACT

The human α1D-adrenergic receptor is a seven transmembrane-domain protein that mediates many of the physiological actions of adrenaline and noradrenaline and participates in the development of hypertension and benign prostatic hyperplasia. We recently reported that different phosphorylation patterns control α1D-adrenergic receptor desensitization. However, to our knowledge, there is no data regarding the role(s) of this receptor's specific phosphorylation residues in its subcellular localization and signaling. In order to address this issue, we mutated the identified phosphorylated residues located on the third intracellular loop and carboxyl tail. In this way, we experimentally confirmed α1D-AR phosphorylation sites and identified, in the carboxyl tail, two groups of residues in close proximity to each other, as well as two individual residues in the proximal (T442) and distal (S543) regions. Our results indicate that phosphorylation of the distal cluster (T507, S515, S516 and S518) favors α1D-AR localization at the plasma membrane, i. e., substitution of these residues for non-phosphorylatable amino acids results in the intracellular localization of the receptors, whereas phospho-mimetic substitution allows plasma membrane localization. Moreover, we found that T442 phosphorylation is necessary for agonist- and phorbol ester-induced receptor colocalization with ß-arrestins. Additionally, we observed that substitution of intracellular loop 3 phosphorylation sites for non-phosphorylatable amino acids resulted in sustained ERK1/2 activation; additional mutations in the phosphorylated residues in the carboxyl tail did not alter this pattern. In contrast, mobilization of intracellular calcium and receptor internalization appear to be controlled by the phosphorylation of both third-intracellular-loop and carboxyl terminus-domain residues. In summary, our data indicate that a) both the phosphorylation sites present in the third intracellular loop and in the carboxyl terminus participate in triggering calcium signaling and in turning-off α1D-AR-induced ERK activation; b) phosphorylation of the distal cluster appears to play a role in receptor's plasma membrane localization; and c) T442 appears to play a critical role in receptor phosphorylation and receptor-ß-arrestin colocalization.


Subject(s)
Receptors, Adrenergic, alpha-1/analysis , Calcium/metabolism , Calcium Signaling , Cell Membrane/metabolism , HEK293 Cells , Humans , MAP Kinase Signaling System , Models, Molecular , Phosphorylation , Protein Conformation , Receptors, Adrenergic, alpha-1/metabolism
17.
Biosci Rep ; 38(6)2018 12 21.
Article in English | MEDLINE | ID: mdl-30366961

ABSTRACT

Sphingosine 1-phosphate (S1P) and FTY720-phosphate (FTYp) increased intracellular calcium in cells expressing S1P1 mCherry-tagged receptors; the synthetic agonist was considerably less potent. Activation of protein kinase C by phorbol myristate acetate (PMA) blocked these effects. The three agents induced receptor phosphorylation and internalization, with the action of FTYp being more intense. S1P1 receptor-Rab protein (GFP-tagged) interaction was studied using FRET. The three agents were able to induce S1P1 receptor-Rab5 interaction, although with different time courses. S1P1 receptor-Rab9 interaction was mainly increased by the phorbol ester, whereas S1P1 receptor-Rab7 interaction was only increased by FTYp and after a 30-min incubation. These actions were not observed using dominant negative (GDP-bound) Rab protein mutants. The data suggested that the three agents induce interaction with early endosomes, but that the natural agonist induced rapid receptor recycling, whereas activation of protein kinase C favored interaction with late endosome and slow recycling and FTYp triggered receptor interaction with vesicles associated with proteasomal/lysosomal degradation. The ability of bisindolylmaleimide I and paroxetine to block some of these actions suggested the activation of protein kinase C was associated mainly with the action of PMA, whereas G protein-coupled receptor kinase (GRK) 2 (GRK2) was involved in the action of the three agents.


Subject(s)
Lysophospholipids/pharmacology , Organophosphates/pharmacology , Paroxetine/pharmacology , Phorbol Esters/pharmacology , Protein Interaction Maps/drug effects , Receptors, Lysosphingolipid/metabolism , Sphingosine/analogs & derivatives , rab GTP-Binding Proteins/metabolism , Enzyme Activation/drug effects , HEK293 Cells , Humans , Phosphorylation/drug effects , Protein Kinase C/metabolism , Sphingosine/pharmacology , Tetradecanoylphorbol Acetate/pharmacology
18.
FEBS Lett ; 592(15): 2612-2623, 2018 08.
Article in English | MEDLINE | ID: mdl-29969835

ABSTRACT

The crosstalk between the free fatty acid receptor FFA4 and the lysophosphatidic acid receptor LPA1 seems to be of pathophysiological importance. We explored this crosstalk employing co-expression of fluorescent protein-tagged receptors. FFA4 activation induces functional desensitization of LPA1 receptors and phosphorylation of both receptors. LPA1 activation induces phosphorylation of LPA1 , but not of FFA4, and induces internalization of both receptors into heterogeneous types of vesicles. Docosahexaenoic acid (DHA) induces internalization of FFA4 but not of LPA1 . Fatty acid-induced FFA4-LPA1 interaction was observed using Förster resonance energy transfer and co-immunoprecipitation. Such interaction took place after desensitization was already established. Data indicate that FFA4 activation induces LPA1 desensitization in an internalization-independent process and that complex cellular processes participate in the crosstalk of these receptors.


Subject(s)
Lysophospholipids/pharmacology , Protein Multimerization/physiology , Receptors, G-Protein-Coupled/agonists , Receptors, Lysophosphatidic Acid/drug effects , Receptors, Lysophosphatidic Acid/metabolism , Docosahexaenoic Acids/pharmacology , Fatty Acids, Nonesterified/metabolism , Fatty Acids, Nonesterified/pharmacology , HEK293 Cells , Humans , Phosphorylation/drug effects , Protein Transport/drug effects , Protein Transport/physiology
19.
Biochim Biophys Acta Mol Cell Res ; 1865(6): 842-854, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29551601

ABSTRACT

Human α1D-adrenoceptors (α1D-ARs) are a group of the seven transmembrane-spanning proteins that mediate many of the physiological and pathophysiological actions of adrenaline and noradrenaline. Although it is known that α1D-ARs are phosphoproteins, their specific phosphorylation sites and the kinases involved in their phosphorylation remain largely unknown. Using a combination of in silico analysis, mass spectrometry and site directed mutagenesis, we identified distinct α1D-AR phosphorylation patterns during noradrenaline- or phorbol ester-mediated desensitizations. We found that the G protein coupled receptor kinase, GRK2, and conventional protein kinases C isoforms α/ß, phosphorylate α1D-AR during these processes. Furthermore, we showed that the phosphorylated residues are located in the receptor's third intracellular loop (S300, S323, T328, S331, S332, S334) and carboxyl region (S441, T442, T477, S486, S492, T507, S515, S516, S518, S543) and are conserved among orthologues but are not conserved among the other human α1-adrenoceptor subtypes. Additionally, we found that phosphorylation in either the third intracellular loop or carboxyl tail was sufficient to regulate calcium signaling desensitization. By contrast, mutations in either of these two domains significantly altered mitogen activated protein kinase (ERK) pathway and receptor internalization, suggesting that they have differential regulatory mechanisms. Our data provide new insights into the functional repercussions of these posttranslational modifications in signaling outcomes and desensitization.


Subject(s)
MAP Kinase Signaling System/physiology , Receptors, Adrenergic, alpha-1/metabolism , HEK293 Cells , Humans , Phosphorylation/physiology , Protein Domains , Protein Structure, Secondary , Receptors, Adrenergic, alpha-1/genetics
20.
Eur J Pharmacol ; 815: 258-265, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28943105

ABSTRACT

Lysophosphatidic acid (LPA) modulates the function of many organs, including the lung. A549 is a lung carcinoma-derived cell line, frequently used as a model for type II pneumocytes. Here we show that these cells expressed messenger RNA coding for LPA1-3 receptors with the following order of abundance: LPA1 > LPA2 > LPA3 and that LPA was able to increase intracellular calcium, extracellular signal-regulated kinases 1/2 phosphorylation, and cell contraction. These effects were blocked by Ki16425, an antagonist selective for LPA1 and LPA3 receptors, and by the LPA1-selective antagonist, AM095. Activation of protein kinase C inhibited LPA-induced intracellular calcium increase. This action was blocked by protein kinase C inhibitors and enzyme down-regulation. Phorbol myristate acetate and AM095, but not Ki16425, decreased the baseline intracellular calcium concentration. Ki16425 blocked the effect of AM095 but not that of phorbol myristate acetate. The data indicate that LPA1 receptors exhibit constitutive activity and that AM095 behaves as an inverse agonist, whereas Ki16425 appears to be a classic antagonist. Furthermore, the LPA agonist, 1-oleoyl-2-O-methyl-rac-glycerophosphothionate, OMPT, induced a weak increase in intracellular calcium, but was able to induce full ERK 1/2 phosphorylation and cell contraction. These effects were blocked by AM095. These data suggest that OMPT is a biased LPA1 agonist. A549 cells express functional LPA1 receptors and seem to be a suitable model to study their signaling and regulation.


Subject(s)
Receptors, Lysophosphatidic Acid/metabolism , Signal Transduction , A549 Cells , Calcium/metabolism , Gene Expression Regulation , Humans , Intracellular Space/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Lysophosphatidic Acid/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...