Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 11(6)2021 May 22.
Article in English | MEDLINE | ID: mdl-34067447

ABSTRACT

In this work, the fetal and newborn anatomical structures of the dolphin oropharyngeal cavities were studied. The main technique used was endoscopy, as these cavities are narrow tubular spaces and the oral cavity is difficult to photograph without moving the specimen. The endoscope was used to study the mucosal features of the oral and pharyngeal cavities. Two pharyngeal diverticula of the auditory tubes were discovered on either side of the choanae and larynx. These spaces begin close to the musculotubaric channel of the middle ear, are linked to the pterygopalatine recesses (pterygoid sinus) and they extend to the maxillopalatine fossa. Magnetic Resonance Imaging (MRI), osteological analysis, sectional anatomy, dissections, and histology were also used to better understand the function of the pharyngeal diverticula of the auditory tubes. These data were then compared with the horse's pharyngeal diverticula of the auditory tubes. The histology revealed that a vascular plexus inside these diverticula could help to expel the air from this space to the nasopharynx. In the oral cavity, teeth remain inside the alveolus and covered by gums. The marginal papillae of the tongue differ in extension depending on the fetal specimen studied. The histology reveals that the incisive papilla is vestigial and contain abundant innervation. No ducts were observed inside lateral sublingual folds in the oral cavity proper and caruncles were not seen in the prefrenular space.

2.
Animals (Basel) ; 11(2)2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33567775

ABSTRACT

Our goal was to analyze the main anatomical structures of the dolphin external nose and nasal cavity from fetal developmental stages to adult. Endoscopy was used to study the common development of the external nose and the melon, and nasal mucosa. Magnetic resonance imaging (MRI) and anatomical sections were correlated with anatomical sections. Computed tomography (CT) was used to generate 3D reconstructions of the nasal bones and nasal cavities to study its development. Dissections, histological and pathological studies were carried out on the nasal mucosa to understand its function. These results were compared with the horse. Endoscopy showed an external nose with two lips and the upper lip is divided by a groove due to the nasal septum and an obstruction of right nasal cavity was diagnosed in a newborn. Two diverticula (air sacs) were found in the nasal vestibule and an incisive recess (premaxillary sac) in the nasal cavity. These findings were corroborated by 3D reconstructions of the nasal cavities, MRI, anatomical sections and dissections. The presphenoid and ethmoid bones were fused at early stages of fetal development. The ethmoid is the last bone to ossify in the nasal cavity.

3.
Animals (Basel) ; 9(12)2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31847155

ABSTRACT

Our objective was to analyze the main anatomical structures of the dolphin head during its developmental stages. Most dolphin studies use only one fetal specimen due to the difficulty in obtaining these materials. Magnetic resonance imaging (MRI) and computed tomography (CT) of two fetuses (younger and older) and a perinatal specimen cadaver of striped dolphins were scanned. Only the older fetus was frozen and then was transversely cross-sectioned. In addition, gross dissections of the head were made on a perinatal and an adult specimen. In the oral cavity, only the mandible and maxilla teeth have started to erupt, while the most rostral teeth have not yet erupted. No salivary glands and masseter muscle were observed. The melon was well identified in CT/MRI images at early stages of development. CT and MRI images allowed observation of the maxillary sinus. The orbit and eyeball were analyzed and the absence of infraorbital rim together with the temporal process of the zygomatic bone holding periorbit were described. An enlarged auditory tube was identified using anatomical sections, CT, and MRI. We also compare the dolphin head anatomy with some mammals, trying to underline the anatomical and physiological changes and explain them from an ontogenic point of view.

SELECTION OF CITATIONS
SEARCH DETAIL
...