Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Fish Shellfish Immunol ; 77: 350-363, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29635066

ABSTRACT

Senegalese sole (Solea senegalensis) has been proposed as a high-potential species for aquaculture diversification in Southern Europe. It has been demonstrated that a proper feeding regimen during the first life stages influences larval growth and survival, as well as fry and juvenile quality. The bacterial strain Shewanella putrefaciens Pdp11 (SpPdp11) has shown very good probiotic properties in Senegalese sole, but information is scarce about its effect in the earliest stages of sole development. Thus, the aim of this study was to investigate the effect of SpPdp11, bioencapsulated in live diet, administered during metamorphosis (10-21 dph) or from the first exogenous feeding of Senegalese sole (2-21 dph). To evaluate the persistence of the probiotic effect, we sampled sole specimens from metamorphosis until the end of weaning (from 23 to 73 dph). This study demonstrated that probiotic administration from the first exogenous feeding produced beneficial effects on Senegalese sole larval development, given that specimens fed this diet exhibited higher and less dispersed weight, as well as increases in both total protein concentration and alkaline phosphatase activity, and in non-specific immune response. Moreover, real-time PCR documented changes in the expression of a set of genes involved in central metabolic functions including genes related to growth, genes coding for proteases (including several digestive enzymes), and genes implicated in the response to stress and in immunity. Overall, these results support the application of SpPdp11 in the first life stages of S. senegalensis as an effective tool with the clear potential to benefit sole aquaculture.


Subject(s)
Fish Proteins/genetics , Flatfishes/genetics , Probiotics/pharmacology , Shewanella putrefaciens/chemistry , Transcription, Genetic , Animal Feed/analysis , Animals , Diet/veterinary , Fish Proteins/metabolism , Flatfishes/growth & development , Flatfishes/immunology
2.
Fish Shellfish Immunol ; 58: 274-283, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27623340

ABSTRACT

The interaction host-intestinal microbiota is essential for the immunological homeostasis of the host. Probiotics, prebiotics and synbiotics are promising tools for the manipulation of the intestinal microbiota towards beneficial effects to the host. The objective of this study was to evaluate the modulation effect on the intestinal microbiota and the transcription of genes involved in the immune response in head kidney of Solea senegalensis after administration of diet supplemented with the prebiotic alginate and the probiotic Shewanella putrefaciens Pdp11 CECT 7627 (SpPdp11). The results showed higher adaptability to dietary changes in the intestinal microbiota of fish fed diet with alginate and SpPdp11 together compared to those fish that received an alginate-supplemented diet. The alginate-supplemented diet produced up-regulation of genes encoding proteins involved in immunological responses, such as complement, lysozyme G and transferrin, and oxidative stress, such as NADPH oxidase and glutation peroxidase. On the other hand, the administration of alginate combined with SpPdp11 resulted in a significant increase of the transcription of genes encoding for glutation peroxidase and HSP70, indicating a potential protective effect of SpPdp11 against oxidative stress. In addition, these effects were maintained after the suspension of the probiotic treatment. The relationship between the modulation of the intestinal microbiota and the expression of genes with protective effect against the oxidative stress was demonstrated by the Principal Components Analysis.


Subject(s)
Alginates , Fish Proteins/genetics , Flatfishes , Gastrointestinal Microbiome/drug effects , Prebiotics , Probiotics , Shewanella putrefaciens , Animal Feed/analysis , Animals , Diet/veterinary , Fish Proteins/metabolism , Flatfishes/growth & development , Flatfishes/immunology , Flatfishes/microbiology , Glucuronic Acid , Hexuronic Acids , Immunity, Innate/drug effects , Oxidative Stress/drug effects , Transcription, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...