Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(4): e0302436, 2024.
Article in English | MEDLINE | ID: mdl-38662786

ABSTRACT

Severe cases of COVID-19 are characterized by development of acute respiratory distress syndrome (ARDS). Water accumulation in the lungs is thought to occur as consequence of an exaggerated inflammatory response. A possible mechanism could involve decreased activity of the epithelial Na+ channel, ENaC, expressed in type II pneumocytes. Reduced transepithelial Na+ reabsorption could contribute to lung edema due to reduced alveolar fluid clearance. This hypothesis is based on the observation of the presence of a novel furin cleavage site in the S protein of SARS-CoV-2 that is identical to the furin cleavage site present in the alpha subunit of ENaC. Proteolytic processing of αENaC by furin-like proteases is essential for channel activity. Thus, competition between S protein and αENaC for furin-mediated cleavage in SARS-CoV-2-infected cells may negatively affect channel activity. Here we present experimental evidence showing that coexpression of the S protein with ENaC in a cellular model reduces channel activity. In addition, we show that bidirectional competition for cleavage by furin-like proteases occurs between 〈ENaC and S protein. In transgenic mice sensitive to lethal SARS-CoV-2, however, a significant decrease in gamma ENaC expression was not observed by immunostaining of lungs infected as shown by SARS-CoV2 nucleoprotein staining.


Subject(s)
COVID-19 , Epithelial Sodium Channels , Furin , Mice, Transgenic , Proteolysis , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Epithelial Sodium Channels/metabolism , Animals , Humans , Mice , Furin/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , COVID-19/metabolism , COVID-19/virology , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/virology , Lung/metabolism , Lung/virology , Lung/pathology , HEK293 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...