Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
2.
Nature ; 616(7955): 143-151, 2023 04.
Article in English | MEDLINE | ID: mdl-36991123

ABSTRACT

The relationship between the human placenta-the extraembryonic organ made by the fetus, and the decidua-the mucosal layer of the uterus, is essential to nurture and protect the fetus during pregnancy. Extravillous trophoblast cells (EVTs) derived from placental villi infiltrate the decidua, transforming the maternal arteries into high-conductance vessels1. Defects in trophoblast invasion and arterial transformation established during early pregnancy underlie common pregnancy disorders such as pre-eclampsia2. Here we have generated a spatially resolved multiomics single-cell atlas of the entire human maternal-fetal interface including the myometrium, which enables us to resolve the full trajectory of trophoblast differentiation. We have used this cellular map to infer the possible transcription factors mediating EVT invasion and show that they are preserved in in vitro models of EVT differentiation from primary trophoblast organoids3,4 and trophoblast stem cells5. We define the transcriptomes of the final cell states of trophoblast invasion: placental bed giant cells (fused multinucleated EVTs) and endovascular EVTs (which form plugs inside the maternal arteries). We predict the cell-cell communication events contributing to trophoblast invasion and placental bed giant cell formation, and model the dual role of interstitial EVTs and endovascular EVTs in mediating arterial transformation during early pregnancy. Together, our data provide a comprehensive analysis of postimplantation trophoblast differentiation that can be used to inform the design of experimental models of the human placenta in early pregnancy.


Subject(s)
Multiomics , Pregnancy Trimester, First , Trophoblasts , Female , Humans , Pregnancy , Cell Movement , Placenta/blood supply , Placenta/cytology , Placenta/physiology , Pregnancy Trimester, First/physiology , Trophoblasts/cytology , Trophoblasts/metabolism , Trophoblasts/physiology , Decidua/blood supply , Decidua/cytology , Maternal-Fetal Relations/physiology , Single-Cell Analysis , Myometrium/cytology , Myometrium/physiology , Cell Differentiation , Organoids/cytology , Organoids/physiology , Stem Cells/cytology , Transcriptome , Transcription Factors/metabolism , Cell Communication
4.
Clin Transl Med ; 12(12): e1123, 2022 12.
Article in English | MEDLINE | ID: mdl-36513876

Subject(s)
Gonads , Humans
5.
Nature ; 607(7919): 540-547, 2022 07.
Article in English | MEDLINE | ID: mdl-35794482

ABSTRACT

Gonadal development is a complex process that involves sex determination followed by divergent maturation into either testes or ovaries1. Historically, limited tissue accessibility, a lack of reliable in vitro models and critical differences between humans and mice have hampered our knowledge of human gonadogenesis, despite its importance in gonadal conditions and infertility. Here, we generated a comprehensive map of first- and second-trimester human gonads using a combination of single-cell and spatial transcriptomics, chromatin accessibility assays and fluorescent microscopy. We extracted human-specific regulatory programmes that control the development of germline and somatic cell lineages by profiling equivalent developmental stages in mice. In both species, we define the somatic cell states present at the time of sex specification, including the bipotent early supporting population that, in males, upregulates the testis-determining factor SRY and sPAX8s, a gonadal lineage located at the gonadal-mesonephric interface. In females, we resolve the cellular and molecular events that give rise to the first and second waves of granulosa cells that compartmentalize the developing ovary to modulate germ cell differentiation. In males, we identify human SIGLEC15+ and TREM2+ fetal testicular macrophages, which signal to somatic cells outside and inside the developing testis cords, respectively. This study provides a comprehensive spatiotemporal map of human and mouse gonadal differentiation, which can guide in vitro gonadogenesis.


Subject(s)
Cell Lineage , Germ Cells , Ovary , Sex Differentiation , Single-Cell Analysis , Testis , Animals , Chromatin/genetics , Chromatin/metabolism , Female , Germ Cells/cytology , Germ Cells/metabolism , Granulosa Cells/cytology , Granulosa Cells/metabolism , Humans , Immunoglobulins , Macrophages/metabolism , Male , Membrane Glycoproteins , Membrane Proteins , Mice , Microscopy, Fluorescence , Ovary/cytology , Ovary/embryology , PAX8 Transcription Factor , Pregnancy , Pregnancy Trimester, First , Pregnancy Trimester, Second , Receptors, Immunologic , Sex Differentiation/genetics , Testis/cytology , Testis/embryology , Transcriptome
6.
Nat Commun ; 13(1): 1779, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35365635

ABSTRACT

Common variable immunodeficiency (CVID), the most prevalent symptomatic primary immunodeficiency, displays impaired terminal B-cell differentiation and defective antibody responses. Incomplete genetic penetrance and ample phenotypic expressivity in CVID suggest the participation of additional pathogenic mechanisms. Monozygotic (MZ) twins discordant for CVID are uniquely valuable for studying the contribution of epigenetics to the disease. Here, we generate a single-cell epigenomics and transcriptomics census of naïve-to-memory B cell differentiation in a CVID-discordant MZ twin pair. Our analysis identifies DNA methylation, chromatin accessibility and transcriptional defects in memory B-cells mirroring defective cell-cell communication upon activation. These findings are validated in a cohort of CVID patients and healthy donors. Our findings provide a comprehensive multi-omics map of alterations in naïve-to-memory B-cell transition in CVID and indicate links between the epigenome and immune cell cross-talk. Our resource, publicly available at the Human Cell Atlas, gives insight into future diagnosis and treatments of CVID patients.


Subject(s)
Common Variable Immunodeficiency , B-Lymphocytes , Common Variable Immunodeficiency/diagnosis , Common Variable Immunodeficiency/genetics , Epigenesis, Genetic , Epigenomics , Germinal Center , Humans
7.
JCI Insight ; 7(5)2022 03 08.
Article in English | MEDLINE | ID: mdl-35138268

ABSTRACT

Primary ovarian insufficiency (POI) affects 1% of women and carries significant medical and psychosocial sequelae. Approximately 10% of POI has a defined genetic cause, with most implicated genes relating to biological processes involved in early fetal ovary development and function. Recently, Ythdc2, an RNA helicase and N6-methyladenosine reader, has emerged as a regulator of meiosis in mice. Here, we describe homozygous pathogenic variants in YTHDC2 in 3 women with early-onset POI from 2 families: c. 2567C>G, p.P856R in the helicase-associated (HA2) domain and c.1129G>T, p.E377*. We demonstrated that YTHDC2 is expressed in the developing human fetal ovary and is upregulated in meiotic germ cells, together with related meiosis-associated factors. The p.P856R variant resulted in a less flexible protein that likely disrupted downstream conformational kinetics of the HA2 domain, whereas the p.E377* variant truncated the helicase core. Taken together, our results reveal that YTHDC2 is a key regulator of meiosis in humans and pathogenic variants within this gene are associated with POI.


Subject(s)
Primary Ovarian Insufficiency , RNA Helicases , Adenosine/analogs & derivatives , Adenosine/genetics , Adenosine/metabolism , Female , Humans , Meiosis , Primary Ovarian Insufficiency/genetics , RNA Helicases/genetics
8.
Nat Genet ; 53(12): 1698-1711, 2021 12.
Article in English | MEDLINE | ID: mdl-34857954

ABSTRACT

The endometrium, the mucosal lining of the uterus, undergoes dynamic changes throughout the menstrual cycle in response to ovarian hormones. We have generated dense single-cell and spatial reference maps of the human uterus and three-dimensional endometrial organoid cultures. We dissect the signaling pathways that determine cell fate of the epithelial lineages in the lumenal and glandular microenvironments. Our benchmark of the endometrial organoids reveals the pathways and cell states regulating differentiation of the secretory and ciliated lineages both in vivo and in vitro. In vitro downregulation of WNT or NOTCH pathways increases the differentiation efficiency along the secretory and ciliated lineages, respectively. We utilize our cellular maps to deconvolute bulk data from endometrial cancers and endometriotic lesions, illuminating the cell types dominating in each of these disorders. These mechanistic insights provide a platform for future development of treatments for common conditions including endometriosis and endometrial carcinoma.


Subject(s)
Endometrium/physiology , Menstrual Cycle , Cell Differentiation , Cell Lineage , Cellular Microenvironment , Endometrial Neoplasms/pathology , Endometrium/embryology , Endometrium/pathology , Female , Gonadal Steroid Hormones/metabolism , Humans , In Vitro Techniques , Organoids , Receptors, Notch/metabolism , Signal Transduction , Spatio-Temporal Analysis , Tissue Culture Techniques , Transcriptome , Uterus/pathology , Wnt Proteins/metabolism
10.
Nat Biotechnol ; 38(3): 365-373, 2020 03.
Article in English | MEDLINE | ID: mdl-31819260

ABSTRACT

Protein phosphorylation is a key post-translational modification regulating protein function in almost all cellular processes. Although tens of thousands of phosphorylation sites have been identified in human cells, approaches to determine the functional importance of each phosphosite are lacking. Here, we manually curated 112 datasets of phospho-enriched proteins, generated from 104 different human cell types or tissues. We re-analyzed the 6,801 proteomics experiments that passed our quality control criteria, creating a reference phosphoproteome containing 119,809 human phosphosites. To prioritize functional sites, we used machine learning to identify 59 features indicative of proteomic, structural, regulatory or evolutionary relevance and integrate them into a single functional score. Our approach identifies regulatory phosphosites across different molecular mechanisms, processes and diseases, and reveals genetic susceptibilities at a genomic scale. Several regulatory phosphosites were experimentally validated, including identifying a role in neuronal differentiation for phosphosites in SMARCC2, a member of the SWI/SNF chromatin-remodeling complex.


Subject(s)
Computational Biology/methods , DNA-Binding Proteins/chemistry , Phosphoproteins/metabolism , Proteomics/methods , Transcription Factors/chemistry , Binding Sites , Cell Line , Data Curation , Databases, Protein , HeLa Cells , Humans , Machine Learning , Mass Spectrometry , Neurogenesis , Phosphoproteins/chemistry , Protein Processing, Post-Translational
11.
Genome Res ; 29(8): 1363-1375, 2019 08.
Article in English | MEDLINE | ID: mdl-31340985

ABSTRACT

The prediction of transcription factor (TF) activities from the gene expression of their targets (i.e., TF regulon) is becoming a widely used approach to characterize the functional status of transcriptional regulatory circuits. Several strategies and data sets have been proposed to link the target genes likely regulated by a TF, each one providing a different level of evidence. The most established ones are (1) manually curated repositories, (2) interactions derived from ChIP-seq binding data, (3) in silico prediction of TF binding on gene promoters, and (4) reverse-engineered regulons from large gene expression data sets. However, it is not known how these different sources of regulons affect the TF activity estimations and, thereby, downstream analysis and interpretation. Here we compared the accuracy and biases of these strategies to define human TF regulons by means of their ability to predict changes in TF activities in three reference benchmark data sets. We assembled a collection of TF-target interactions for 1541 human TFs and evaluated how different molecular and regulatory properties of the TFs, such as the DNA-binding domain, specificities, or mode of interaction with the chromatin, affect the predictions of TF activity. We assessed their coverage and found little overlap on the regulons derived from each strategy and better performance by literature-curated information followed by ChIP-seq data. We provide an integrated resource of all TF-target interactions derived through these strategies, with confidence scores, as a resource for enhanced prediction of TF activities.


Subject(s)
Benchmarking , DNA, Neoplasm/genetics , Neoplasm Proteins/genetics , Neoplasms/genetics , Transcription Factors/genetics , Transcription, Genetic , Binding Sites , Chromatin/chemistry , Chromatin/metabolism , Chromatin Immunoprecipitation , Computational Biology/methods , DNA, Neoplasm/metabolism , Datasets as Topic , Gene Regulatory Networks , Humans , Neoplasm Proteins/metabolism , Neoplasms/classification , Neoplasms/metabolism , Neoplasms/pathology , Promoter Regions, Genetic , Protein Binding , Regulon , Transcription Factors/metabolism
12.
PLoS One ; 13(10): e0202926, 2018.
Article in English | MEDLINE | ID: mdl-30303964

ABSTRACT

Acute myeloid leukemia (AML) is associated with the sequential accumulation of acquired genetic alterations. Although at diagnosis cytogenetic alterations are frequent in AML, roughly 50% of patients present an apparently normal karyotype (NK), leading to a highly heterogeneous prognosis. Due to this significant heterogeneity, it has been suggested that different molecular mechanisms may trigger the disease with diverse prognostic implications. We performed whole-exome sequencing (WES) of tumor-normal matched samples of de novo AML-NK patients lacking mutations in NPM1, CEBPA or FLT3-ITD to identify new gene mutations with potential prognostic and therapeutic relevance to patients with AML. Novel candidate-genes, together with others previously described, were targeted resequenced in an independent cohort of 100 de novo AML patients classified in the cytogenetic intermediate-risk (IR) category. A mean of 4.89 mutations per sample were detected in 73 genes, 35 of which were mutated in more than one patient. After a network enrichment analysis, we defined a single in silico model and established a set of seed-genes that may trigger leukemogenesis in patients with normal karyotype. The high heterogeneity of gene mutations observed in AML patients suggested that a specific alteration could not be as essential as the interaction of deregulated pathways.


Subject(s)
Exome Sequencing , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Neoplasm Proteins/genetics , Adult , Aged , Cytodiagnosis , Female , Gene Regulatory Networks/genetics , Genetic Association Studies , Genetic Heterogeneity , Humans , Karyotype , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , Mutation , Nucleophosmin , Prognosis
13.
Sci Rep ; 8(1): 6713, 2018 04 30.
Article in English | MEDLINE | ID: mdl-29713020

ABSTRACT

Cancer hallmarks are evolutionary traits required by a tumour to develop. While extensively characterised, the way these traits are achieved through the accumulation of somatic mutations in key biological pathways is not fully understood. To shed light on this subject, we characterised the landscape of pathway alterations associated with somatic mutations observed in 4,415 patients across ten cancer types, using 374 orthogonal pathway gene-sets mapped onto canonical cancer hallmarks. Towards this end, we developed SLAPenrich: a computational method based on population-level statistics, freely available as an open source R package. Assembling the identified pathway alterations into sets of hallmark signatures allowed us to connect somatic mutations to clinically interpretable cancer mechanisms. Further, we explored the heterogeneity of these signatures, in terms of ratio of altered pathways associated with each individual hallmark, assuming that this is reflective of the extent of selective advantage provided to the cancer type under consideration. Our analysis revealed the predominance of certain hallmarks in specific cancer types, thus suggesting different evolutionary trajectories across cancer lineages. Finally, although many pathway alteration enrichments are guided by somatic mutations in frequently altered high-confidence cancer genes, excluding these driver mutations preserves the hallmark heterogeneity signatures, thus the detected hallmarks' predominance across cancer types. As a consequence, we propose the hallmark signatures as a ground truth to characterise tails of infrequent genomic alterations and identify potential novel cancer driver genes and networks.


Subject(s)
Gene Regulatory Networks/genetics , Neoplasm Proteins/genetics , Neoplasms/genetics , Signal Transduction/genetics , Gene Expression Regulation, Neoplastic/genetics , Genome, Human/genetics , Genomics/statistics & numerical data , Humans , Models, Theoretical , Mutation/genetics
14.
Cancer Res ; 78(3): 769-780, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29229604

ABSTRACT

Transcriptional dysregulation induced by aberrant transcription factors (TF) is a key feature of cancer, but its global influence on drug sensitivity has not been examined. Here, we infer the transcriptional activity of 127 TFs through analysis of RNA-seq gene expression data newly generated for 448 cancer cell lines, combined with publicly available datasets to survey a total of 1,056 cancer cell lines and 9,250 primary tumors. Predicted TF activities are supported by their agreement with independent shRNA essentiality profiles and homozygous gene deletions, and recapitulate mutant-specific mechanisms of transcriptional dysregulation in cancer. By analyzing cell line responses to 265 compounds, we uncovered numerous TFs whose activity interacts with anticancer drugs. Importantly, combining existing pharmacogenomic markers with TF activities often improves the stratification of cell lines in response to drug treatment. Our results, which can be queried freely at dorothea.opentargets.io, offer a broad foundation for discovering opportunities to refine personalized cancer therapies.Significance: Systematic analysis of transcriptional dysregulation in cancer cell lines and patient tumor specimens offers a publicly searchable foundation to discover new opportunities to refine personalized cancer therapies. Cancer Res; 78(3); 769-80. ©2017 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic/drug effects , Neoplasms/drug therapy , Pharmacogenetics , Small Molecule Libraries/pharmacology , Transcription Factors/genetics , Apoptosis , Cell Proliferation , Humans , Neoplasms/genetics , Neoplasms/pathology , Transcription Factors/metabolism , Tumor Cells, Cultured
15.
Cell Syst ; 5(4): 386-398.e4, 2017 10 25.
Article in English | MEDLINE | ID: mdl-29032074

ABSTRACT

Copy-number variations (CNVs) are ubiquitous in cancer and often act as driver events, but the effects of CNVs on the proteome of tumors are poorly understood. Here, we analyze recently published genomics, transcriptomics, and proteomics datasets made available by CPTAC and TCGA consortia on 282 breast, ovarian, and colorectal tumor samples to investigate the impact of CNVs in the proteomes of these cells. We found that CNVs are buffered by post-transcriptional regulation in 23%-33% of proteins that are significantly enriched in protein complex members. Our analyses show that complex subunits are highly co-regulated, and some act as rate-limiting steps of complex assembly, as their depletion induces decreased abundance of other complex members. We identified 48 such rate-limiting interactions and experimentally confirmed our predictions on the interactions of AP3B1 with AP3M1 and GTF2E2 with GTF2E1. This study highlights the importance of post-transcriptional mechanisms in cancer that allow cells to cope with their altered genomes.


Subject(s)
DNA Copy Number Variations/genetics , Neoplasms/genetics , RNA Processing, Post-Transcriptional/genetics , Cell Line , Cell Line, Tumor , Genome/genetics , Genomics/methods , HCT116 Cells , HEK293 Cells , Humans , Proteome/genetics , Proteomics/methods , Transcriptome/genetics
16.
Bioinformatics ; 32(19): 3041-3, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27296979

ABSTRACT

UNLABELLED: : CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them. Computations and analyses are remotely executed in high-end servers, and all the functionalities are available through RESTful web services. CellMaps can easily be integrated in any web page by using an available JavaScript API. AVAILABILITY AND IMPLEMENTATION: The application is available at: http://cellmaps.babelomics.org/ and the code can be found in: https://github.com/opencb/cell-maps The client is implemented in JavaScript and the server in C and Java. CONTACT: jdopazo@cipf.es SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Biochemical Phenomena , Software , Internet
17.
PLoS One ; 11(2): e0148346, 2016.
Article in English | MEDLINE | ID: mdl-26886259

ABSTRACT

Preliminary Acute Promyelocytic Leukemia (APL) whole exome sequencing (WES) studies have identified a huge number of somatic mutations affecting more than a hundred different genes mainly in a non-recurrent manner, suggesting that APL is a heterogeneous disease with secondary relevant changes not yet defined. To extend our knowledge of subtle genetic alterations involved in APL that might cooperate with PML/RARA in the leukemogenic process, we performed a comprehensive analysis of somatic mutations in APL combining WES with sequencing of a custom panel of targeted genes by next-generation sequencing. To select a reduced subset of high confidence candidate driver genes, further in silico analysis were carried out. After prioritization and network analysis we found recurrent deleterious mutations in 8 individual genes (STAG2, U2AF1, SMC1A, USP9X, IKZF1, LYN, MYCBP2 and PTPN11) with a strong potential of being involved in APL pathogenesis. Our network analysis of multiple mutations provides a reliable approach to prioritize genes for additional analysis, improving our knowledge of the leukemogenesis interactome. Additionally, we have defined a functional module in the interactome of APL. The hypothesis is that the number, or the specific combinations, of mutations harbored in each patient might not be as important as the disturbance caused in biological key functions, triggered by several not necessarily recurrent mutations.


Subject(s)
Gene Regulatory Networks , Leukemia, Promyelocytic, Acute/genetics , Mutation/genetics , Exome/genetics , Genome, Human , Humans , INDEL Mutation/genetics , Mutation Rate , Polymorphism, Single Nucleotide/genetics , Reproducibility of Results
18.
Mol Biol Evol ; 33(5): 1205-18, 2016 05.
Article in English | MEDLINE | ID: mdl-26764160

ABSTRACT

Recent results from large-scale genomic projects suggest that allele frequencies, which are highly relevant for medical purposes, differ considerably across different populations. The need for a detailed catalog of local variability motivated the whole-exome sequencing of 267 unrelated individuals, representative of the healthy Spanish population. Like in other studies, a considerable number of rare variants were found (almost one-third of the described variants). There were also relevant differences in allelic frequencies in polymorphic variants, including ∼10,000 polymorphisms private to the Spanish population. The allelic frequencies of variants conferring susceptibility to complex diseases (including cancer, schizophrenia, Alzheimer disease, type 2 diabetes, and other pathologies) were overall similar to those of other populations. However, the trend is the opposite for variants linked to Mendelian and rare diseases (including several retinal degenerative dystrophies and cardiomyopathies) that show marked frequency differences between populations. Interestingly, a correspondence between differences in allelic frequencies and disease prevalence was found, highlighting the relevance of frequency differences in disease risk. These differences are also observed in variants that disrupt known drug binding sites, suggesting an important role for local variability in population-specific drug resistances or adverse effects. We have made the Spanish population variant server web page that contains population frequency information for the complete list of 170,888 variant positions we found publicly available (http://spv.babelomics.org/), We show that it if fundamental to determine population-specific variant frequencies to distinguish real disease associations from population-specific polymorphisms.


Subject(s)
Disease/genetics , Exome , Databases, Nucleic Acid , Drug Resistance/genetics , Gene Frequency , Genetic Predisposition to Disease , Genetic Variation , Genetics, Population/methods , Humans , Internet , Pharmacogenomic Testing , Polymorphism, Genetic , Spain/epidemiology
19.
BMC Med Genomics ; 8: 83, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26690675

ABSTRACT

BACKGROUND: The molecular mechanisms leading to sporadic medullary thyroid carcinoma (sMTC) and juvenile papillary thyroid carcinoma (PTC), two rare tumours of the thyroid gland, remain poorly understood. Genetic studies on thyroid carcinomas have been conducted, although just a few loci have been systematically associated. Given the difficulties to obtain single-loci associations, this work expands its scope to the study of epistatic interactions that could help to understand the genetic architecture of complex diseases and explain new heritable components of genetic risk. METHODS: We carried out the first screening for epistasis by Multifactor-Dimensionality Reduction (MDR) in genome-wide association study (GWAS) on sMTC and juvenile PTC, to identify the potential simultaneous involvement of pairs of variants in the disease. RESULTS: We have identified two significant epistatic gene interactions in sMTC (CHFR-AC016582.2 and C8orf37-RNU1-55P) and three in juvenile PTC (RP11-648k4.2-DIO1, RP11-648k4.2-DMGDH and RP11-648k4.2-LOXL1). Interestingly, each interacting gene pair included a non-coding RNA, providing thus support to the relevance that these elements are increasingly gaining to explain carcinoma development and progression. CONCLUSIONS: Overall, this study contributes to the understanding of the genetic basis of thyroid carcinoma susceptibility in two different case scenarios such as sMTC and juvenile PTC.


Subject(s)
Carcinoma, Neuroendocrine/genetics , Carcinoma/genetics , Epistasis, Genetic , Genome-Wide Association Study , Thyroid Neoplasms/genetics , Adolescent , Carcinoma, Papillary , Case-Control Studies , Child , Child, Preschool , Female , Genetic Predisposition to Disease/genetics , Humans , Male , Polymorphism, Single Nucleotide , Thyroid Cancer, Papillary , Young Adult
20.
PLoS Comput Biol ; 11(10): e1004518, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26485003

ABSTRACT

Despite their importance in maintaining the integrity of all cellular pathways, the role of mutations on protein-protein interaction (PPI) interfaces as cancer drivers has not been systematically studied. Here we analyzed the mutation patterns of the PPI interfaces from 10,028 proteins in a pan-cancer cohort of 5,989 tumors from 23 projects of The Cancer Genome Atlas (TCGA) to find interfaces enriched in somatic missense mutations. To that end we use e-Driver, an algorithm to analyze the mutation distribution of specific protein functional regions. We identified 103 PPI interfaces enriched in somatic cancer mutations. 32 of these interfaces are found in proteins coded by known cancer driver genes. The remaining 71 interfaces are found in proteins that have not been previously identified as cancer drivers even that, in most cases, there is an extensive literature suggesting they play an important role in cancer. Finally, we integrate these findings with clinical information to show how tumors apparently driven by the same gene have different behaviors, including patient outcomes, depending on which specific interfaces are mutated.


Subject(s)
DNA Mutational Analysis/methods , Neoplasm Proteins/genetics , Neoplasms/genetics , Polymorphism, Single Nucleotide/genetics , Protein Interaction Mapping/methods , Signal Transduction/genetics , Animals , Base Sequence , Biomarkers, Tumor/genetics , Catalogs as Topic , Chromosome Mapping , Computer Simulation , Genetic Predisposition to Disease/genetics , Humans , Models, Genetic , Molecular Sequence Data , Mutation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...