Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed J ; : 100701, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38281699

ABSTRACT

BACKGROUND: Iron deficiency is the top leading cause of anaemia, whose treatment has been shown to deteriorate gut health. However, a comprehensive analysis of the intestinal barrier and the gut microbiome during IDA have not been performed to date. This study aims to delve further into the analysis of these two aspects, which will mean a step forward minimising the negative impact of iron supplements on intestinal health. METHODS: IDA was experimentally induced in an animal model. Shotgun sequencing was used to analyse the gut microbiome in the colonic region, while the intestinal barrier was studied through histological analyses, mRNA sequencing (RNA-Seq), qPCR and immunofluorescence. Determinations of lipopolysaccharide (LPS) and bacteria-specific immunoglobulins were performed to assess microbial translocation. RESULTS: Microbial metabolism in the colon shifted towards an increased production of certain amino acids, short chain fatty acids and nucleotides, with Clostridium species being enriched during IDA. Structural alterations of the colonic epithelium were shown by histological analysis. RNA-Seq revealed a downregulation of extracellular matrix-associated genes and proteins and an overall underdeveloped epithelium. Increased levels of serum LPS and an increased immune response against dysbiotic bacteria support an impairment in the integrity of the gut barrier during IDA. CONCLUSIONS: IDA negatively impacts the gut microbiome and the intestinal barrier, triggering an increased microbial translocation. This study emphasizes the deterioration of gut health during IDA and the fact that it should be addressed when treating the disease.

2.
J Agric Food Chem ; 71(42): 15668-15679, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37830350

ABSTRACT

Iron deficiency anemia (IDA) is a global public health concern affecting 1.6 billion people worldwide. The administration of iron supplements during the treatment of IDA adversely affects the intestinal barrier function and the composition and functionality of the intestinal microbiome, both of which are already altered during IDA. For this reason, it is of great interest to develop nutritional strategies aimed at alleviating these gut alterations associated with IDA and its treatment. In this sense, fermented goat's milk (FGM) was studied due to its nutritional quality. Our findings showed that in anemic animals the consumption of a FGM-based diet, compared to a standard diet, had positive modulatory effects on the intestinal microbiome. FGM-based diet restored intestinal dysbiosis, the intestinal barrier functionality, and bacterial translocation, contributing to a more efficient recovery of IDA. Therefore, FGM is a useful nutritional tool to ease intestinal alterations occurring during IDA and during its treatment.


Subject(s)
Anemia, Iron-Deficiency , Gastrointestinal Microbiome , Animals , Humans , Milk/microbiology , Anemia, Iron-Deficiency/drug therapy , Iron , Goats
3.
Eur J Nutr ; 61(1): 399-412, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34383140

ABSTRACT

PURPOSE: Anaemia is a global health concern, with iron deficiency anaemia (IDA) causing approximately 50% of cases. Affecting mostly the elderly, pregnant and adult women and children, physiopathology of IDA in relation to the gut microbiome is poorly understood. Therefore, the objective of this study is to analyse, in an animal model, the effect of IDA on the gut microbiome along the gastrointestinal tract, as well as to relate intestinal dysbiosis to changes in microbial metabolites such as short chain fatty acids (SCFA). METHODS: IDA was experimentally induced through an iron deficient diet for a period of 40 days, with twenty weaned male Wistar rats being randomly divided into control or anaemic groups. Blood samples were collected to control haematological parameters, and so were faecal and intestinal content samples to study gut microbial communities and SCFA, using 16S rRNA sequencing and HPLC-UV respectively. RESULTS: An intestinal dysbiosis was observed as a consequence of IDA, especially towards the distal segments of the gastrointestinal tract and the colon. An increase in SCFA was also noticed during IDA, with the major difference appearing in the colon and correlating with changes in the composition of the gut microbiome. Clostridium_sensu_stricto_1 and Clostridium_sensu_stricto_4 showed the greatest correlation with variations in butyric and propionic concentrations in the colon of anaemic animals. CONCLUSIONS: Composition of intestinal microbial communities was affected by the generation of IDA. An enrichment in certain SCFA-producing genera and SCFA concentrations was found in the colon of anaemic animals, suggesting a trade-off mechanism against disease.


Subject(s)
Anemia , Gastrointestinal Microbiome , Animals , Fatty Acids, Volatile , Feces , Female , Iron Deficiencies , Male , Pregnancy , RNA, Ribosomal, 16S/genetics , Rats , Rats, Wistar
4.
J Sci Food Agric ; 102(3): 1114-1123, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34329496

ABSTRACT

BACKGROUND: Iron deficiency and iron overload can affect the normal functioning of the innate and adaptive immune responses. Fermented milk products may enhance immune functions, but little is known about the effect of fermented milks on modulation of the immune response during iron deficiency anemia and recovery with normal or high dietary iron intake. Eighty male Wistar rats were randomly assigned to a control group fed a standard diet or to an anemic group fed a diet deficit in iron. Control and anemic groups were fed for 30 days with diets based on a fermented goat's or cow's milk product, with normal iron content or iron overload. RESULTS: In general, during anemia recovery lectin and alternative complement pathway activity and lactoferrin decreased, because it improves iron homeostasis, which is critically important in immune system functions. Fermented goat's milk diet enhanced immune function during iron deficiency recovery, suppressed oxidant-induced eotaxin and fractalkine expression due to the concurrent reduction of free radical production and pro-inflammatory cytokines, and decreased monocyte chemoattractant protein-1 and monocyte migration and adhesion. The increase in interferon-γ can confer immunological colonization of gut microbiota and downregulate inflammation. CONCLUSION: Fermented goat's milk consumption enhances immune function, modifying complement pathway activity and decreasing pro-inflammatory cytokines as well as lactoferrin concentration, due to the improvement of iron homeostasis, which is critically important in the normal function of the immune system. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Anemia/diet therapy , Cultured Milk Products/analysis , Iron Deficiencies/diet therapy , Iron Deficiencies/immunology , Anemia/immunology , Anemia/metabolism , Animals , Cattle , Female , Goats , Humans , Immunity , Iron/metabolism , Iron Deficiencies/metabolism , Male , Rats , Rats, Wistar
5.
Nutrients ; 11(10)2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31591353

ABSTRACT

Iron deficiency anemia (IDA) is one of the most prevalent nutritional deficiencies worldwide. Iron plays critical roles in nervous system development and cognition. Despite the known detrimental consequences of IDA on cognition, available studies do not provide molecular mechanisms elucidating the role of iron in brain functions during iron deficiency and recovery with dairy components. In this study, 100 male Wistar rats were placed on a pre-experimental period of 40 days and randomly divided in two groups: a control group receiving a normal-Fe diet, (45 mg/kg), and an Fe-deficient group receiving a low-Fe diet (5 mg/kg). At day 40, 10 rats per group were sacrificed to anemia control, and 80 rats were divided into eight experimental groups fed with fermented goat or cow milk-based diets, with normal Fe content or Fe overload (450 mg/kg) for 30 days. IDA decreased most of the parameters related to brain molecular functions, namely dopamine, irisin, MAO-A, oxytocin, ß-endorphin, and α-MSH, while it increased synaptophysin. These alterations result in an impairment of brain molecular functions. In general, during anemia recovery, fermented goat milk diet consumption increased dopamine, oxytocin, serotonin, synaptophysin, and α-MSH, and decreased MAO-A and MAO-B, suggesting a potential neuroprotective effect in brain functions, which could enhance brain molecular functions.


Subject(s)
Anemia, Iron-Deficiency/diet therapy , Brain Diseases/prevention & control , Brain/metabolism , Cultured Milk Products , Milk , Anemia, Iron-Deficiency/blood , Anemia, Iron-Deficiency/physiopathology , Animal Feed , Animals , Biomarkers/blood , Brain/physiopathology , Brain Diseases/metabolism , Brain Diseases/physiopathology , Disease Models, Animal , Goats , Male , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...