Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters










Publication year range
1.
Nat Metab ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997442

ABSTRACT

Obesity is often associated with a chronic, low-grade inflammatory state affecting the entire body. This sustained inflammatory state disrupts the coordinated communication between the periphery and the brain, which has a crucial role in maintaining homeostasis through humoural, nutrient-mediated, immune and nervous signalling pathways. The inflammatory changes induced by obesity specifically affect communication interfaces, including the blood-brain barrier, glymphatic system and meninges. Consequently, brain areas near the third ventricle, including the hypothalamus and other cognition-relevant regions, become susceptible to impairments, resulting in energy homeostasis dysregulation and an elevated risk of cognitive impairments such as Alzheimer's disease and dementia. This Review explores the intricate communication between the brain and the periphery, highlighting the effect of obesity-induced inflammation on brain function.

2.
Article in English | MEDLINE | ID: mdl-38821753

ABSTRACT

The past decades have witnessed the rise and fall of several, largely unsuccessful, therapeutic attempts to bring the escalating obesity pandemic to a halt. Looking back to look ahead, the field has now put its highest hopes in translating insights from how the gastrointestinal (GI) tract communicates with the brain to calibrate behavior, physiology, and metabolism. A major focus of this review is to summarize the latest advances in comprehending the neuroendocrine aspects of this so-called 'gut-brain axis' and to explore novel concepts, cutting-edge technologies, and recent paradigm-shifting experiments. These exciting insights continue to refine our understanding of gut-brain crosstalk and are poised to promote the development of additional therapeutic avenues at the dawn of a new era of antiobesity therapeutics.

3.
Mol Metab ; 83: 101915, 2024 May.
Article in English | MEDLINE | ID: mdl-38492844

ABSTRACT

OBJECTIVE: The glucose-dependent insulinotropic polypeptide (GIP) decreases body weight via central GIP receptor (GIPR) signaling, but the underlying mechanisms remain largely unknown. Here, we assessed whether GIP regulates body weight and glucose control via GIPR signaling in cells that express the leptin receptor (Lepr). METHODS: Hypothalamic, hindbrain, and pancreatic co-expression of Gipr and Lepr was assessed using single cell RNAseq analysis. Mice with deletion of Gipr in Lepr cells were generated and metabolically characterized for alterations in diet-induced obesity (DIO), glucose control and leptin sensitivity. Long-acting single- and dual-agonists at GIPR and GLP-1R were further used to assess drug effects on energy and glucose metabolism in DIO wildtype (WT) and Lepr-Gipr knock-out (KO) mice. RESULTS: Gipr and Lepr show strong co-expression in the pancreas, but not in the hypothalamus and hindbrain. DIO Lepr-Gipr KO mice are indistinguishable from WT controls related to body weight, food intake and diet-induced leptin resistance. Acyl-GIP and the GIPR:GLP-1R co-agonist MAR709 remain fully efficacious to decrease body weight and food intake in DIO Lepr-Gipr KO mice. Consistent with the demonstration that Gipr and Lepr highly co-localize in the endocrine pancreas, including the ß-cells, we find the superior glycemic effect of GIPR:GLP-1R co-agonism over single GLP-1R agonism to vanish in Lepr-Gipr KO mice. CONCLUSIONS: GIPR signaling in cells/neurons that express the leptin receptor is not implicated in the control of body weight or food intake, but is of crucial importance for the superior glycemic effects of GIPR:GLP-1R co-agonism relative to single GLP-1R agonism.


Subject(s)
Body Weight , Eating , Gastric Inhibitory Polypeptide , Mice, Knockout , Obesity , Receptors, Gastrointestinal Hormone , Receptors, Leptin , Animals , Male , Mice , Gastric Inhibitory Polypeptide/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/genetics , Glucose/metabolism , Leptin/metabolism , Mice, Inbred C57BL , Obesity/metabolism , Receptors, Gastrointestinal Hormone/metabolism , Receptors, Gastrointestinal Hormone/genetics , Receptors, Leptin/metabolism , Receptors, Leptin/genetics , Signal Transduction
4.
Nat Metab ; 6(3): 448-457, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38418586

ABSTRACT

Insulin resistance is an early complication of diet-induced obesity (DIO)1, potentially leading to hyperglycaemia and hyperinsulinaemia, accompanied by adaptive ß cell hypertrophy and development of type 2 diabetes2. Insulin not only signals via the insulin receptor (INSR), but also promotes ß cell survival, growth and function via the insulin-like growth factor 1 receptor (IGF1R)3-6. We recently identified the insulin inhibitory receptor (inceptor) as the key mediator of IGF1R and INSR desensitization7. But, although ß cell-specific loss of inceptor improves ß cell function in lean mice7, it warrants clarification whether inceptor signal inhibition also improves glycaemia under conditions of obesity. We assessed the glucometabolic effects of targeted inceptor deletion in either the brain or the pancreatic ß cells under conditions of DIO in male mice. In the present study, we show that global and neuronal deletion of inceptor, as well as its adult-onset deletion in the ß cells, improves glucose homeostasis by enhancing ß cell health and function. Moreover, we demonstrate that inceptor-mediated improvement in glucose control does not depend on inceptor function in agouti-related protein-expressing or pro-opiomelanocortin neurons. Our data demonstrate that inceptor inhibition improves glucose homeostasis in mice with DIO, hence corroborating that inceptor is a crucial regulator of INSR and IGF1R signalling.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Mice , Male , Animals , Insulin-Secreting Cells/metabolism , Glucose/metabolism , Diabetes Mellitus, Type 2/metabolism , Obesity/genetics , Obesity/metabolism , Diet , Insulin/metabolism , Homeostasis , Neurons/metabolism
5.
Nat Commun ; 14(1): 8175, 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38071352

ABSTRACT

Mammalian circadian clocks respond to feeding and light cues, adjusting internal rhythms with day/night cycles. Astrocytes serve as circadian timekeepers, driving daily physiological rhythms; however, it's unknown how they ensure precise cycle-to-cycle rhythmicity. This is critical for understanding why mistimed or erratic feeding, as in shift work, disrupts circadian physiology- a condition linked to type 2 diabetes and obesity. Here, we show that astrocytic insulin signaling sets the free-running period of locomotor activity in female mice and food entrainment in male mice. Additionally, ablating the insulin receptor in hypothalamic astrocytes alters cyclic energy homeostasis differently in male and female mice. Remarkably, the mutants exhibit altered dopamine metabolism, and the pharmacological modulation of dopaminergic signaling partially restores distinct circadian traits in both male and female mutant mice. Our findings highlight the role of astrocytic insulin-dopaminergic signaling in conveying time-of-feeding or lighting cues to the astrocyte clock, thus governing circadian behavior in a sex-specific manner.


Subject(s)
Astrocytes , Circadian Clocks , Receptor, Insulin , Animals , Female , Male , Mice , Circadian Clocks/genetics , Circadian Rhythm , Dopamine , Feeding Behavior , Insulin
6.
Cell Rep ; 42(10): 113305, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37864798

ABSTRACT

Oxytocin-expressing paraventricular hypothalamic neurons (PVNOT neurons) integrate afferent signals from the gut, including cholecystokinin (CCK), to adjust whole-body energy homeostasis. However, the molecular underpinnings by which PVNOT neurons orchestrate gut-to-brain feeding control remain unclear. Here, we show that mice undergoing selective ablation of PVNOT neurons fail to reduce food intake in response to CCK and develop hyperphagic obesity on a chow diet. Notably, exposing wild-type mice to a high-fat/high-sugar (HFHS) diet recapitulates this insensitivity toward CCK, which is linked to diet-induced transcriptional and electrophysiological aberrations specifically in PVNOT neurons. Restoring OT pathways in diet-induced obese (DIO) mice via chemogenetics or polypharmacology sufficiently re-establishes CCK's anorexigenic effects. Last, by single-cell profiling, we identify a specialized PVNOT neuronal subpopulation with increased κ-opioid signaling under an HFHS diet, which restrains their CCK-evoked activation. In sum, we document a (patho)mechanism by which PVNOT signaling uncouples a gut-brain satiation pathway under obesogenic conditions.


Subject(s)
Oxytocin , Paraventricular Hypothalamic Nucleus , Mice , Animals , Oxytocin/pharmacology , Paraventricular Hypothalamic Nucleus/metabolism , Analgesics, Opioid/pharmacology , Neurons/metabolism , Satiation , Cholecystokinin/metabolism
7.
EMBO Rep ; 24(10): e57600, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37671834

ABSTRACT

Adipocytes are critical regulators of metabolism and energy balance. While white adipocyte dysfunction is a hallmark of obesity-associated disorders, thermogenic adipocytes are linked to cardiometabolic health. As adipocytes dynamically adapt to environmental cues by functionally switching between white and thermogenic phenotypes, a molecular understanding of this plasticity could help improving metabolism. Here, we show that the lncRNA Apoptosis associated transcript in bladder cancer (AATBC) is a human-specific regulator of adipocyte plasticity. Comparing transcriptional profiles of human adipose tissues and cultured adipocytes we discovered that AATBC was enriched in thermogenic conditions. Using primary and immortalized human adipocytes we found that AATBC enhanced the thermogenic phenotype, which was linked to increased respiration and a more fragmented mitochondrial network. Expression of AATBC in adipose tissue of mice led to lower plasma leptin levels. Interestingly, this association was also present in human subjects, as AATBC in adipose tissue was inversely correlated with plasma leptin levels, BMI, and other measures of metabolic health. In conclusion, AATBC is a novel obesity-linked regulator of adipocyte plasticity and mitochondrial function in humans.

8.
9.
Cell Metab ; 35(3): 438-455.e7, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36889283

ABSTRACT

Until menopause, women have a lower propensity to develop metabolic diseases than men, suggestive of a protective role for sex hormones. Although a functional synergy between central actions of estrogens and leptin has been demonstrated to protect against metabolic disturbances, the underlying cellular and molecular mechanisms mediating this crosstalk have remained elusive. By using a series of embryonic, adult-onset, and tissue/cell-specific loss-of-function mouse models, we document an unprecedented role of hypothalamic Cbp/P300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 1 (Cited1) in mediating estradiol (E2)-dependent leptin actions that control feeding specifically in pro-opiomelanocortin (Pomc) neurons. We reveal that within arcuate Pomc neurons, Cited1 drives leptin's anorectic effects by acting as a co-factor converging E2 and leptin signaling via direct Cited1-ERα-Stat3 interactions. Together, these results provide new insights on how melanocortin neurons integrate endocrine inputs from gonadal and adipose axes via Cited1, thereby contributing to the sexual dimorphism in diet-induced obesity.


Subject(s)
Arcuate Nucleus of Hypothalamus , Leptin , Mice , Animals , Female , Leptin/metabolism , Estradiol/pharmacology , Pro-Opiomelanocortin/metabolism , Hypothalamus/metabolism , Obesity/metabolism
10.
Nature ; 615(7953): 705-711, 2023 03.
Article in English | MEDLINE | ID: mdl-36922598

ABSTRACT

Artificial sweeteners are used as calorie-free sugar substitutes in many food products and their consumption has increased substantially over the past years1. Although generally regarded as safe, some concerns have been raised about the long-term safety of the consumption of certain sweeteners2-5. In this study, we show that the intake of high doses of sucralose in mice results in immunomodulatory effects by limiting T cell proliferation and T cell differentiation. Mechanistically, sucralose affects the membrane order of T cells, accompanied by a reduced efficiency of T cell receptor signalling and intracellular calcium mobilization. Mice given sucralose show decreased CD8+ T cell antigen-specific responses in subcutaneous cancer models and bacterial infection models, and reduced T cell function in models of T cell-mediated autoimmunity. Overall, these findings suggest that a high intake of sucralose can dampen T cell-mediated responses, an effect that could be used in therapy to mitigate T cell-dependent autoimmune disorders.


Subject(s)
Sucrose , Sweetening Agents , T-Lymphocytes , Animals , Mice , Sucrose/analogs & derivatives , Sweetening Agents/administration & dosage , Sweetening Agents/adverse effects , Sweetening Agents/pharmacology , Sweetening Agents/therapeutic use , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Food Safety , Calcium Signaling/drug effects , Receptors, Antigen, T-Cell/drug effects , Receptors, Antigen, T-Cell/immunology , Bacterial Infections/immunology , Neoplasms/immunology , Autoimmunity/drug effects , Autoimmunity/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology
11.
Mol Metab ; 66: 101616, 2022 12.
Article in English | MEDLINE | ID: mdl-36270613

ABSTRACT

OBJECTIVE: The Allan-Herndon-Dudley syndrome (AHDS) is a severe disease caused by dysfunctional central thyroid hormone transport due to functional loss of the monocarboxylate transporter 8 (MCT8). In this study, we assessed whether mice with concomitant deletion of the thyroid hormone transporters Mct8 and the organic anion transporting polypeptide (Oatp1c1) represent a valid preclinical model organism for the AHDS. METHODS: We generated and metabolically characterized a new CRISPR/Cas9 generated Mct8/Oatp1c1 double-knockout (dKO) mouse line for the clinical features observed in patients with AHDS. RESULTS: We show that Mct8/Oatp1c1 dKO mice mimic key hallmarks of the AHDS, including decreased life expectancy, central hypothyroidism, peripheral hyperthyroidism, impaired neuronal myelination, impaired motor abilities and enhanced peripheral thyroid hormone action in the liver, adipose tissue, skeletal muscle and bone. CONCLUSIONS: We conclude that Mct8/Oatp1c1 dKO mice are a valuable model organism for the preclinical evaluation of drugs designed to treat the AHDS.


Subject(s)
Mental Retardation, X-Linked , Symporters , Animals , Mice , Monocarboxylic Acid Transporters/genetics , Symporters/genetics , Mental Retardation, X-Linked/genetics , Thyroid Hormones
12.
Cell Metab ; 34(10): 1532-1547.e6, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36198294

ABSTRACT

The hypothalamus is key in the control of energy balance. However, strategies targeting hypothalamic neurons have failed to provide viable options to treat most metabolic diseases. Conversely, the role of astrocytes in systemic metabolic control has remained largely unexplored. Here, we show that obesity promotes anatomically restricted remodeling of hypothalamic astrocyte activity. In the paraventricular nucleus (PVN) of the hypothalamus, chemogenetic manipulation of astrocytes results in bidirectional control of neighboring neuron activity, autonomic outflow, glucose metabolism, and energy balance. This process recruits a mechanism involving the astrocytic control of ambient glutamate levels, which becomes defective in obesity. Positive or negative chemogenetic manipulation of PVN astrocyte Ca2+ signals, respectively, worsens or improves metabolic status of diet-induced obese mice. Collectively, these findings highlight a yet unappreciated role for astrocytes in the direct control of systemic metabolism and suggest potential targets for anti-obesity strategy.


Subject(s)
Astrocytes , Hypothalamus , Animals , Astrocytes/metabolism , Energy Metabolism/physiology , Glucose/metabolism , Glutamic Acid/metabolism , Hypothalamus/metabolism , Mice , Obesity/metabolism , Paraventricular Hypothalamic Nucleus/metabolism
13.
Nat Metab ; 4(8): 1071-1083, 2022 08.
Article in English | MEDLINE | ID: mdl-35995995

ABSTRACT

Dual agonists activating the peroxisome proliferator-activated receptors alpha and gamma (PPARɑ/ɣ) have beneficial effects on glucose and lipid metabolism in patients with type 2 diabetes, but their development was discontinued due to potential adverse effects. Here we report the design and preclinical evaluation of a molecule that covalently links the PPARɑ/ɣ dual-agonist tesaglitazar to a GLP-1 receptor agonist (GLP-1RA) to allow for GLP-1R-dependent cellular delivery of tesaglitazar. GLP-1RA/tesaglitazar does not differ from the pharmacokinetically matched GLP-1RA in GLP-1R signalling, but shows GLP-1R-dependent PPARɣ-retinoic acid receptor heterodimerization and enhanced improvements of body weight, food intake and glucose metabolism relative to the GLP-1RA or tesaglitazar alone in obese male mice. The conjugate fails to affect body weight and glucose metabolism in GLP-1R knockout mice and shows preserved effects in obese mice at subthreshold doses for the GLP-1RA and tesaglitazar. Liquid chromatography-mass spectrometry-based proteomics identified PPAR regulated proteins in the hypothalamus that are acutely upregulated by GLP-1RA/tesaglitazar. Our data show that GLP-1RA/tesaglitazar improves glucose control with superior efficacy to the GLP-1RA or tesaglitazar alone and suggest that this conjugate might hold therapeutic value to acutely treat hyperglycaemia and insulin resistance.


Subject(s)
Diabetes Mellitus, Type 2 , PPAR alpha , Alkanesulfonates , Animals , Body Weight , Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptide 1/therapeutic use , Glucagon-Like Peptide-1 Receptor , Glucose , Male , Mice , Obesity/drug therapy , Obesity/metabolism , PPAR alpha/agonists , PPAR alpha/therapeutic use , Phenylpropionates
14.
Glia ; 70(11): 2062-2078, 2022 11.
Article in English | MEDLINE | ID: mdl-35802021

ABSTRACT

Hypothalamic astrocytes are particularly affected by energy-dense food consumption. How the anatomical location of these glial cells and their spatial molecular distribution in the arcuate nucleus of the hypothalamus (ARC) determine the cellular response to a high caloric diet remains unclear. In this study, we investigated their distinctive molecular responses following exposure to a high-fat high-sugar (HFHS) diet, specifically in the ARC. Using RNA sequencing and proteomics, we showed that astrocytes have a distinct transcriptomic and proteomic profile dependent on their anatomical location, with a major proteomic reprogramming in hypothalamic astrocytes. By ARC single-cell sequencing, we observed that a HFHS diet dictates time- and cell- specific transcriptomic responses, revealing that astrocytes have the most distinct regulatory pattern compared to other cell types. Lastly, we topographically and molecularly characterized astrocytes expressing glial fibrillary acidic protein and/or aldehyde dehydrogenase 1 family member L1 in the ARC, of which the abundance was significantly increased, as well as the alteration in their spatial and molecular profiles, with a HFHS diet. Together, our results provide a detailed multi-omics view on the spatial and temporal changes of astrocytes particularly in the ARC during different time points of adaptation to a high calorie diet.


Subject(s)
Astrocytes , Proteomics , Arcuate Nucleus of Hypothalamus/metabolism , Astrocytes/metabolism , Diet, High-Fat/adverse effects , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Hypothalamus/metabolism
15.
Proc Natl Acad Sci U S A ; 119(29): e2204527119, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35858325

ABSTRACT

Mice with insulin receptor (IR)-deficient astrocytes (GFAP-IR knockout [KO] mice) show blunted responses to insulin and reduced brain glucose uptake, whereas IR-deficient astrocytes show disturbed mitochondrial responses to glucose. While exploring the functional impact of disturbed mitochondrial function in astrocytes, we observed that GFAP-IR KO mice show uncoupling of brain blood flow with glucose uptake. Since IR-deficient astrocytes show higher levels of reactive oxidant species (ROS), this leads to stimulation of hypoxia-inducible factor-1α and, consequently, of the vascular endothelial growth factor angiogenic pathway. Indeed, GFAP-IR KO mice show disturbed brain vascularity and blood flow that is normalized by treatment with the antioxidant N-acetylcysteine (NAC). NAC ameliorated high ROS levels, normalized angiogenic signaling and mitochondrial function in IR-deficient astrocytes, and normalized neurovascular coupling in GFAP-IR KO mice. Our results indicate that by modulating glucose uptake and angiogenesis, insulin receptors in astrocytes participate in neurovascular coupling.


Subject(s)
Astrocytes , Brain , Insulin , Neovascularization, Physiologic , Neurovascular Coupling , Animals , Astrocytes/metabolism , Brain/blood supply , Glial Fibrillary Acidic Protein/genetics , Glucose/metabolism , Insulin/metabolism , Mice , Mice, Knockout , Reactive Oxygen Species/metabolism , Receptor, Insulin/genetics , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
16.
Nat Metab ; 4(5): 505-506, 2022 05.
Article in English | MEDLINE | ID: mdl-35501600

Subject(s)
Astrocytes , Synapses
17.
Metabolites ; 11(11)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34822390

ABSTRACT

Normal brain function highly relies on the appropriate functioning of astrocytes. These glial cells are strategically situated between blood vessels and neurons, provide significant substrate support to neuronal demand, and are sensitive to neuronal activity and energy-related molecules. Astrocytes respond to many metabolic conditions and regulate a wide array of physiological processes, including cerebral vascular remodeling, glucose sensing, feeding, and circadian rhythms for the control of systemic metabolism and behavior-related responses. This regulation ultimately elicits counterregulatory mechanisms in order to couple whole-body energy availability with brain function. Therefore, understanding the role of astrocyte crosstalk with neighboring cells via the release of molecules, e.g., gliotransmitters, into the parenchyma in response to metabolic and neuronal cues is of fundamental relevance to elucidate the distinct roles of these glial cells in the neuroendocrine control of metabolism. Here, we review the mechanisms underlying astrocyte-released gliotransmitters that have been reported to be crucial for maintaining homeostatic regulation of systemic metabolism.

18.
Int J Mol Sci ; 22(22)2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34830411

ABSTRACT

Synaptotagmin-13 (Syt13) is an atypical member of the vesicle trafficking synaptotagmin protein family. The expression pattern and the biological function of this Ca2+-independent protein are not well resolved. Here, we have generated a novel Syt13-Venus fusion (Syt13-VF) fluorescence reporter allele to track and isolate tissues and cells expressing Syt13 protein. The reporter allele is regulated by endogenous cis-regulatory elements of Syt13 and the fusion protein follows an identical expression pattern of the endogenous Syt13 protein. The homozygous reporter mice are viable and fertile. We identify the expression of the Syt13-VF reporter in different regions of the brain with high expression in tyrosine hydroxylase (TH)-expressing and oxytocin-producing neuroendocrine cells. Moreover, Syt13-VF is highly restricted to all enteroendocrine cells in the adult intestine that can be traced in live imaging. Finally, Syt13-VF protein is expressed in the pancreatic endocrine lineage, allowing their specific isolation by flow sorting. These findings demonstrate high expression levels of Syt13 in the endocrine lineages in three major organs harboring these secretory cells. Collectively, the Syt13-VF reporter mouse line provides a unique and reliable tool to dissect the spatio-temporal expression pattern of Syt13 and enables isolation of Syt13-expressing cells that will aid in deciphering the molecular functions of this protein in the neuroendocrine system.


Subject(s)
Brain/metabolism , Intestines/metabolism , Pancreas/metabolism , Synaptotagmins/genetics , Animals , Brain/pathology , Cell Line, Tumor , Cell Lineage/genetics , Cell Movement/genetics , Gene Expression Regulation/genetics , Humans , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Mice , Neurosecretory Systems/metabolism , Neurosecretory Systems/pathology , Oxytocin/genetics , Synaptotagmins/metabolism , Tyrosine 3-Monooxygenase/genetics
19.
Nat Metab ; 3(10): 1415-1431, 2021 10.
Article in English | MEDLINE | ID: mdl-34675439

ABSTRACT

Current pharmacological therapies for treating obesity are of limited efficacy. Genetic ablation or loss of function of AMP-activated protein kinase alpha 1 (AMPKα1) in steroidogenic factor 1 (SF1) neurons of the ventromedial nucleus of the hypothalamus (VMH) induces feeding-independent resistance to obesity due to sympathetic activation of brown adipose tissue (BAT) thermogenesis. Here, we show that body weight of obese mice can be reduced by intravenous injection of small extracellular vesicles (sEVs) delivering a plasmid encoding an AMPKα1 dominant negative mutant (AMPKα1-DN) targeted to VMH-SF1 neurons. The beneficial effect of SF1-AMPKα1-DN-loaded sEVs is feeding-independent and involves sympathetic nerve activation and increased UCP1-dependent thermogenesis in BAT. Our results underscore the potential of sEVs to specifically target AMPK in hypothalamic neurons and introduce a broader strategy to manipulate body weight and reduce obesity.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Adipose Tissue, Brown/enzymology , Extracellular Vesicles/metabolism , Hypothalamus/enzymology , Obesity/metabolism , Animals , Energy Metabolism , Mice , Thermogenesis , Weight Loss
20.
Int J Mol Sci ; 22(12)2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34201099

ABSTRACT

Astrocytes are a type of glial cell anatomically and functionally integrated into the neuronal regulatory circuits for the neuroendocrine control of metabolism. Being functional integral compounds of synapses, astrocytes are actively involved in the physiological regulatory aspects of metabolic control, but also in the pathological processes that link neuronal dysfunction and obesity. Between brain areas, the hypothalamus harbors specialized functional circuits that seem selectively vulnerable to metabolic damage, undergoing early cellular rearrangements which are thought to be at the core of the pathogenesis of diet-induced obesity. Such changes in the hypothalamic brain region consist of a rise in proinflammatory cytokines, the presence of a reactive phenotype in astrocytes and microglia, alterations in the cytoarchitecture and synaptology of hypothalamic circuits, and angiogenesis, a phenomenon that cannot be found elsewhere in the brain. Increasing evidence points to the direct involvement of hypothalamic astrocytes in such early metabolic disturbances, thus moving the study of these glial cells to the forefront of obesity research. Here we provide a comprehensive review of the most relevant findings of molecular and pathophysiological mechanisms by which hypothalamic astrocytes might be involved in the pathogenesis of obesity.


Subject(s)
Astrocytes/pathology , Hypothalamus/pathology , Neurosecretory Systems/pathology , Obesity/pathology , Animals , Astrocytes/metabolism , Humans , Hypothalamus/metabolism , Neurosecretory Systems/metabolism , Obesity/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...