Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (191)2023 01 13.
Article in English | MEDLINE | ID: mdl-36715425

ABSTRACT

Body size is an important functional trait that can be used as a bioindicator to assess the impacts of perturbations in natural communities. Community size structure responds to biotic and abiotic gradients, including anthropogenic perturbations across taxa and ecosystems. However, the manual measurement of small-bodied organisms such as benthic macroinvertebrates (e.g., >500 µm to a few centimeters long) is time-consuming. To expedite the estimation of community size structure, here, we developed a protocol to semi-automatically measure the individual body size of preserved river macroinvertebrates, which are one of the most commonly used bioindicators for assessing the ecological status of freshwater ecosystems. This protocol is adapted from an existing methodology developed to scan marine mesozooplankton with a scanning system designed for water samples. The protocol consists of three main steps: (1) scanning subsamples (fine and coarse sample size fractions) of river macroinvertebrates and processing the digitized images to individualize each detected object in each image; (2) creating, evaluating, and validating a learning set through artificial intelligence to semi-automatically separate the individual images of macroinvertebrates from detritus and artifacts in the scanned samples; and (3) depicting the size structure of the macroinvertebrate communities. In addition to the protocol, this work includes the calibration results and enumerates several challenges and recommendations to adapt the procedure to macroinvertebrate samples and to consider for further improvements. Overall, the results support the use of the presented scanning system for the automatic body size measurement of river macroinvertebrates and suggest that the depiction of their size spectrum is a valuable tool for the rapid bioassessment of freshwater ecosystems.


Subject(s)
Ecosystem , Invertebrates , Animals , Environmental Monitoring/methods , Artificial Intelligence , Fresh Water , Rivers
2.
Nature ; 607(7919): 507-511, 2022 07.
Article in English | MEDLINE | ID: mdl-35831505

ABSTRACT

The fossil record of marine invertebrates has long fuelled the debate as to whether or not there are limits to global diversity in the sea1-5. Ecological theory states that, as diversity grows and ecological niches are filled, the strengthening of biological interactions imposes limits on diversity6,7. However, the extent to which biological interactions have constrained the growth of diversity over evolutionary time remains an open question1-5,8-11. Here we present a regional diversification model that reproduces the main Phanerozoic eon trends in the global diversity of marine invertebrates after imposing mass extinctions. We find that the dynamics of global diversity are best described by a diversification model that operates widely within the exponential growth regime of a logistic function. A spatially resolved analysis of the ratio of diversity to carrying capacity reveals that less than 2% of the global flooded continental area throughout the Phanerozoic exhibits diversity levels approaching ecological saturation. We attribute the overall increase in global diversity during the Late Mesozoic and Cenozoic eras to the development of diversity hotspots under prolonged conditions of Earth system stability and maximum continental fragmentation. We call this the 'diversity hotspots hypothesis', which we propose as a non-mutually exclusive alternative to the hypothesis that the Mesozoic marine revolution led this macroevolutionary trend12,13.


Subject(s)
Aquatic Organisms , Biodiversity , Extinction, Biological , Fossils , Models, Biological , Oceans and Seas , Animals , Biological Evolution , Ecology , History, Ancient , Invertebrates , Logistic Models
3.
Data Brief ; 42: 108248, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35599831

ABSTRACT

We provide a unique fish individual body size dataset collected from our own sampling and public sources in north-eastern Spain. The dataset includes individual body size measures (fork length and mass) of 12,288 individuals of 24 fish species within 10 families collected at 118 locations in large rivers and small streams. Fish were caught by one-pass electrofishing following European standard protocols. The fish dataset has information on the local instream conditions including climatic variables (i.e., temperature and precipitation), topography (i.e., altitude), nutrient concentration (i.e., total phosphorus and nitrates), and the IMPRESS values (a measure of cumulative human impacts in lotic ecosystems). The potential uses of this new fish dataset are manifold, including developing size-based indices to further estimate the ecological status of freshwater ecosystems, allometric models, and analysis of variation in body size structure along environmental gradients.

4.
Nature ; 560(7716): 76-79, 2018 08.
Article in English | MEDLINE | ID: mdl-29988081

ABSTRACT

The past two million years of eastern African climate variability is currently poorly constrained, despite interest in understanding its assumed role in early human evolution1-4. Rare palaeoclimate records from northeastern Africa suggest progressively drier conditions2,5 or a stable hydroclimate6. By contrast, records from Lake Malawi in tropical southeastern Africa reveal a trend of a progressively wetter climate over the past 1.3 million years7,8. The climatic forcings that controlled these past hydrological changes are also a matter of debate. Some studies suggest a dominant local insolation forcing on hydrological changes9-11, whereas others infer a potential influence of sea surface temperature changes in the Indian Ocean8,12,13. Here we show that the hydroclimate in southeastern Africa (20-25° S) is controlled by interplay between low-latitude insolation forcing (precession and eccentricity) and changes in ice volume at high latitudes. Our results are based on a multiple-proxy reconstruction of hydrological changes in the Limpopo River catchment, combined with a reconstruction of sea surface temperature in the southwestern Indian Ocean for the past 2.14 million years. We find a long-term aridification in the Limpopo catchment between around 1 and 0.6 million years ago, opposite to the hydroclimatic evolution suggested by records from Lake Malawi. Our results, together with evidence of wetting at Lake Malawi, imply that the rainbelt contracted toward the Equator in response to increased ice volume at high latitudes. By reducing the extent of woodland or wetlands in terrestrial ecosystems, the observed changes in the hydroclimate of southeastern Africa-both in terms of its long-term state and marked precessional variability-could have had a role in the evolution of early hominins, particularly in the extinction of Paranthropus robustus.


Subject(s)
Biological Evolution , Climate , Hominidae , Rain , Alkanes/analysis , Alkanes/chemistry , Animals , Extinction, Biological , Foraminifera/chemistry , Forests , History, Ancient , Hydrology , Indian Ocean , Lakes , Malawi , Plants/chemistry , Rivers , Water Cycle , Waxes/chemistry , Wetlands
5.
Proc Biol Sci ; 283(1824)2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26865298

ABSTRACT

Body size exerts multiple effects on plankton food-web interactions. However, the influence of size structure on trophic transfer remains poorly quantified in the field. Here, we examine how the size diversity of prey (nano-microplankton) and predators (mesozooplankton) influence trophic transfer efficiency (using biomass ratio as a proxy) in natural marine ecosystems. Our results support previous studies on single trophic levels: transfer efficiency decreases with increasing prey size diversity and is enhanced with greater predator size diversity. We further show that communities with low nano-microplankton size diversity and high mesozooplankton size diversity tend to occur in warmer environments with low nutrient concentrations, thus promoting trophic transfer to higher trophic levels in those conditions. Moreover, we reveal an interactive effect of predator and prey size diversities: the positive effect of predator size diversity becomes influential when prey size diversity is high. Mechanistically, the negative effect of prey size diversity on trophic transfer may be explained by unicellular size-based metabolic constraints as well as trade-offs between growth and predation avoidance with size, whereas increasing predator size diversity may enhance diet niche partitioning and thus promote trophic transfer. These findings provide insights into size-based theories of ecosystem functioning, with implications for ecosystem predictive models.


Subject(s)
Biomass , Food Chain , Plankton/physiology , Pacific Ocean , Taiwan
6.
J Anim Ecol ; 82(5): 1052-61, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23506226

ABSTRACT

1. The biodiversity-ecosystem functioning debate is a central topic in ecology. Recently, there has been a growing interest in size diversity because body size is sensitive to environmental changes and is one of the fundamental characteristics of organisms linking many ecosystem properties. However, how size diversity affects ecosystem functioning is an important yet unclear issue. 2. To fill the gap, with large-scale field data from the East China Sea, we tested the novel hypothesis that increasing zooplankton size diversity enhances top-down control on phytoplankton (H1) and compared it with five conventional hypotheses explaining the top-down control: flatter zooplankton size spectrum enhances the strength of top-down control (H2); nutrient enrichment lessens the strength of top-down control (H3); increasing zooplankton taxonomic diversity enhances the strength of top-down control (H4); increasing fish predation decreases the strength of top-down control of zooplankton on phytoplankton through trophic cascade (H5); increasing temperature intensifies the strength of top-down control (H6). 3. The results of univariate analyses support the hypotheses based on zooplankton size diversity (H1), zooplankton size spectrum (H2), nutrient (H3) and zooplankton taxonomic diversity (H4), but not the hypotheses based on fish predation (H5) and temperature (H6). More in-depth analyses indicate that zooplankton size diversity is the most important factor in determining the strength of top-down control on phytoplankton in the East China Sea. 4. Our results suggest a new potential mechanism that increasing predator size diversity enhances the strength of top-down control on prey through diet niche partitioning. This mechanism can be explained by the optimal predator-prey body-mass ratio concept. Suppose each size group of zooplankton predators has its own optimal phytoplankton prey size, increasing size diversity of zooplankton would promote diet niche partitioning of predators and thus elevates the strength of top-down control.


Subject(s)
Biodiversity , Body Size/physiology , Feeding Behavior/physiology , Food Chain , Phytoplankton/physiology , Zooplankton/physiology , Animals , Biomass , Diet , Fishes , Pacific Ocean , Seawater/chemistry , Temperature , Zooplankton/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...