Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Heliyon ; 10(3): e25445, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38352745

ABSTRACT

Arabinoxylans (AX) have become a focal point in the pharmaceutical sector owing to their physicochemical, biological, and functional properties. The purpose of this paper was to present a summary of the utilization of AX as drug release matrices through a bibliometric analysis (BA) and a literature review to spotlight the AX functional characteristics and their technological applications to promote this line of research. The BA was carried out using data from a Web of Science database research, specifically emphasizing the analysis of authors' keywords. This approach was chosen due to its significance in comprehensively understanding a particular research field and its relevance for in-depth knowledge of a research field. The BA outcomes revealed limited information concerning the AX applications in both release matrices and as excipients in the formulation and development of drug delivery systems (DDS), so there is a need for additional scientific and technological research in these areas to address the existing information gaps. However, the literature review shows that the native and modified AX from different delivery release systems, such as macrogels (including films, tablets, and hard gelatin capsules) and multi-particulate systems (including micro and nanogels), present an excellent potential as release matrices of biomolecules and drugs, such as doxorubicin, diclofenac sodium, caffeine, gentamicin, tizanidine hydrochloride, and insulin. In conclusion, AX have a wide potential for application in the pharmaceutical industry, so this work is expected to be a reference point for future research by scientists, technologists, and entrepreneurs who cope with the subject.

2.
Nat Prod Res ; 38(10): 1759-1765, 2024 May.
Article in English | MEDLINE | ID: mdl-37203313

ABSTRACT

This study evaluated the possible use of a fraction of brewers' spent grain rich in arabinoxylans (BSG-AX) as an excipient that modifies the release of class III drugs (Biopharmaceutics Classification System), by determining the release profile of metformin hydrochloride (MH), in a water medium. The cumulative percentage of MH release showed the best linear fit when modeled with the cumulative distribution function (CDF) of the Weibull distribution (R2 = 0.993 ± 0.001). According to the Korsmeyer-Peppas model, the first stage of MH release is regulated by a super case-II transport mechanism controlled by the expansion and relaxation of BSG-AX. Finally, with the Hixson-Crowell model, a release rate (kHC) of 0.350 ± 0.026 h-13 was obtained (R2 = 0.996 ± 0.007). BSG-AX constitutes a suitable material for producing prolonged drug release vehicles; however, additional research is required to provide a better encapsulation of the active ingredients to ensure their optimal applicability and performance.


Subject(s)
Water , Xylans , Drug Liberation , Edible Grain
3.
World J Microbiol Biotechnol ; 37(1): 15, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33394178

ABSTRACT

Microorganisms have developed quorum sensing (QS) systems to detect small signaling molecules that help to control access to additional nutrients and space in highly competitive polymicrobial niches. Many bacterial processes are QS-regulated; two examples are the highly related traits of the natural genetic competence state and the production of antimicrobial peptides such as bacteriocins. The Streptococcus genus is widely studied for its competence and for its ability to produce bacteriocins, as these antimicrobial peptides have significant potential in the treatment of infections caused by multiple-resistant pathogens, a severe public health issue. The transduction of a two-component system controls competence in streptococci: (1) ComD/E, which controls the competence in the Mitis and Anginosus groups, and (2) ComR/S, which performs the same function in the Bovis, Mutans, Salivarius, and Pyogenic groups. The cell-to-cell communication required for bacteriocin production in the Streptococcus groups is controlled mainly by a paralog of the ComD/E system. The relationships between pheromone signals and induction pathways are related to the bacteriocin production systems. In this review, we discuss the recent advances in the understanding of signaling and the induction of bacteriocin biosynthesis by QS regulation in streptococci. This information could aid in the design of better methods for the development and production of these antimicrobial peptides. It could also contribute to the analysis and emerging applications of bacteriocins in terms of their safety, quality, and human health benefits.


Subject(s)
Bacteriocins/metabolism , Quorum Sensing , Streptococcus/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/pharmacology , Bacteriocins/genetics , Bacteriocins/pharmacology , Drug Resistance/drug effects , Gene Expression Regulation, Bacterial , Humans , Protein Engineering , Species Specificity , Streptococcus/classification , Streptococcus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL