Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 23(24)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38139636

ABSTRACT

Preventing the progressive deterioration of works of art over time is a topic of great interest to collectors and museums. With this aim, time capsules where environmental conditions remain unchanged are well known for preserving art. In this paper, a prototype of an IoT time capsule is presented with a focus on low cost in order to make it accessible to private collectors or small museums with tight budgets. Valencian 'sainetes' (small plays), which are considered materials of artistic interest, have been placed in a "time capsule", which is a manually made container with insulating materials for keeping small pieces for a long time. Environmental control has been performed with a low-cost microcontroller, sensors and actuators connected to a free online IoT platform. This platform recorded data and made decisions based on these data, sending cooling or heating orders to an environmental control system. The results obtained are very satisfactory and open interesting perspectives for future research. However, they also highlight some relevant technical and economic limitations that will have to be considered in the future.

2.
Sensors (Basel) ; 22(12)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35746334

ABSTRACT

The deployment of sensors is the first issue encountered when microclimate monitoring is planned in spaces devoted to the conservation of artworks. Sometimes, the first decision regarding the position of sensors may not be suitable for characterising the microclimate close to climate-sensitive artworks or should be revised in light of new circumstances. This paper fits into this context by proposing a rational approach for a posteriori deployment of microclimate sensors in museums where long-term temperature and relative humidity observations were available (here, the Rosenborg Castle, Copenhagen, Denmark). Different statistical tools such as box-and-whisker plots, principal component analysis (PCA) and cluster analysis (CA) were used to identify microclimate patterns, i.e., similarities of indoor air conditions among rooms. Box-and-whisker plots allowed us to clearly identify one microclimate pattern in two adjoining rooms located in the basement. Multivariate methods (PCA and CA) enabled us to identify further microclimate patterns by grouping not only adjoining rooms but also rooms located on different floors. Based on these outcomes, new configurations about the deployment of sensors were proposed aimed at avoiding redundant sensors and collecting microclimate observations in other sensitive locations of this museum.


Subject(s)
Microclimate , Museums , Climate , Humidity , Temperature
3.
Egypt Liver J ; 12(1): 70, 2022.
Article in English | MEDLINE | ID: mdl-36589635

ABSTRACT

Background: Dengue constitutes a public health problem in endemic regions. The clinical course can range from asymptomatic to severe expressions. Hemorrhagic manifestations are the most frequently reported complications; on the contrary, thrombotic complications are unusual. Clinical case: We present the case of an adult patient who presented hemodynamic instability, severe thrombocytopenia, and positive serology for dengue, in whom acute portal vein thrombosis was documented. The possible pathophysiology of thrombocytopenia and thrombosis in dengue is discussed, as well as the dilemmas regarding the treatment of associated hemorrhagic and thrombotic manifestations. Conclusions: The present case brings up the importance of considering the possibility of thrombotic events in patients with severe dengue. A high degree of suspicion, close assessment of hemostatic function, and quality supportive care are essential to improve outcomes. To our knowledge, this is the first report of dengue-associated portal vein thrombosis.

4.
Sensors (Basel) ; 21(23)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34883797

ABSTRACT

Adequate thermic conditions are required for the preventive conservation of artworks, but such optimum conditions cannot always be achieved in historical buildings such as ancient churches. In those cases, it is of interest to assess the potential risk of punctual changes in indoor environments that can be harmful to artworks. These conditions can be assessed by means of a microclimate monitoring system comprised of a set of energy-efficient wireless sensors connected to the cloud using IoT techniques. This approach was followed at the baroque church of Saint Thomas and Saint Philip Neri in Valencia (Spain). A set of 26 wireless nodes was installed, which recorded values of temperature and relative humidity every hour for a period of 7 months. Small differences of temperature were obtained among sensors, so that an efficient methodology based on principal component analysis (PCA) was applied for the characterization of similarities and dissimilarities between sensors. Daily ranges of temperatures were studied as well as mean trajectories, differences between days of the week, and changes in the correlation structure of daily median values over time. Results provide a framework for an efficient characterization of temperatures in heritage buildings based on a network of wireless sensors. Such a framework is useful to assess the potential risk of temperature fluctuations on the preventive conservation of historical buildings and artworks.


Subject(s)
Microclimate , Spain , Temperature
5.
Sensors (Basel) ; 21(22)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34833831

ABSTRACT

The monitoring and control of thermo-hygrometric indoor conditions is necessary for an adequate preservation of cultural heritage. The European standard EN 15757:2010 specifies a procedure for determining if seasonal patterns of relative humidity (RH) and temperature are adequate for the long-term preservation of hygroscopic materials on display at museums, archives, libraries or heritage buildings. This procedure is based on the characterization of the seasonal patterns and the calculation of certain control limits, so that it is possible to assess whether certain changes in the microclimate can be harmful for the preventive conservation of artworks, which would lead to the implementation of corrective actions. In order to discuss the application of this standard, 27 autonomous data-loggers were located in different points at the Archaeological Museum of l'Almoina (Valencia). The HVAC system (heating, ventilation and air conditioning) at the museum tries to reach certain homogeneous environment, which becomes a challenge because parts of the ruins are covered by a skylight that produces a greenhouse effect in summer, resulting in severe thermo-hygrometric gradients. Based on the analysis of temperatures recorded during 16 months, the air conditions in this museum are discussed according to the standard EN 15757:2010, and some corrective measures are proposed to improve the conservation conditions. Although this standard is basically intended for data recorded from a single sensor, an alternative approach proposed in this work is to find zones inside the museum with a homogeneous microclimate and to discuss next the average values collected in each area. A methodology is presented to optimize the application of this standard in places with a complex microclimate like this case, when multiple sensors are located at different positions.


Subject(s)
Microclimate , Museums , Archaeology , Spain , Temperature
6.
Sensors (Basel) ; 21(20)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34696134

ABSTRACT

The baroque church of Saint Thomas and Saint Philip Neri (Valencia, Spain), which was built between 1727 and 1736, contains valuable paintings by renowned Spanish artists. Due to the considerable height of the central nave, the church can experience vertical temperature gradients. In order to investigate this issue, temperatures were recorded between August 2017 and February 2018 from a wireless monitoring system composed of 21 sensor nodes, which were located at different heights in the church from 2 to 13 m from the floor level. For characterizing the temperature at high, medium and low altitude heights, a novel methodology is proposed based on sparse Partial Least Squares regression (sPLS), Linear Discriminant Analysis (LDA), and the Holt-Winters method, among others, which were applied to a time series of temperature. This approach is helpful to discriminate temperature profiles according to sensor height. Once the vertical thermal gradients for each month were characterized, it was found that temperature reached the maximum correlation with sensor height in the period between August 10th and September 9th. Furthermore, the most important features from the time series that explain this correlation are the mean temperature and the mean of moving range. In the period mentioned, the vertical thermal gradient was estimated to be about 0.043 ∘C/m, which implies a difference of 0.47 ∘C on average between sensor nodes at 2 m from the floor with respect to the upper ones located at 13 m from the floor level. The gradient was estimated as the slope from a linear regression model using height and hourly mean temperature as the predictor and response, respectively. This gradient is consistent with similar reported studies. The fact that such gradient was only found in one month suggests that the mechanisms of dust deposition on walls involved in vertical thermal gradients are not important in this case regarding the preventive conservation of artworks. Furthermore, the methodology proposed here was useful to discriminate the time series at high, medium and low altitude levels. This approach can be useful when a set of sensors is installed for microclimate monitoring in churches, cathedrals, and other historical buildings, at different levels and positions.


Subject(s)
Temperature , Spain
7.
Sensors (Basel) ; 21(13)2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34206737

ABSTRACT

An earlier study carried out in 2010 at the archaeological site of L'Almoina (Valencia, Spain) found marked daily fluctuations of temperature, especially in summer. Such pronounced gradient is due to the design of the museum, which includes a skylight as a ceiling, covering part of the remains in the museum. In this study, it was found that the thermal conditions are not homogeneous and vary at different points of the museum and along the year. According to the European Standard EN10829, it is necessary to define a plan for long-term monitoring, elaboration and study of the microclimatic data, in order to preserve the artifacts. With the aforementioned goal of extending the study and offering a tool to monitor the microclimate, a new statistical methodology is proposed. For this propose, during one year (October 2019-October 2020), a set of 27 data-loggers was installed, aimed at recording the temperature inside the museum. By applying principal component analysis and k-means, three different microclimates were established. In order to characterize the differences among the three zones, two statistical techniques were put forward. Firstly, Sparse Partial Least Squares Discriminant Analysis (sPLS-DA) was applied to a set of 671 variables extracted from the time series. The second approach consisted of using a random forest algorithm, based on the same functions and variables employed by the first methodology. Both approaches allowed the identification of the main variables that best explain the differences between zones. According to the results, it is possible to establish a representative subset of sensors recommended for the long-term monitoring of temperatures at the museum. The statistical approach proposed here is very effective for discriminant time series analysis and for explaining the differences in microclimate when a net of sensors is installed in historical buildings or museums.


Subject(s)
Microclimate , Museums , Archaeology , Spain , Temperature
8.
Sensors (Basel) ; 21(14)2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34300394

ABSTRACT

The aim of the present study was to evaluate the relative attenuation of VIS, UV and NIR solar radiation through a large pond skylight into the interior of the l'Almoina Archaeological Museum (Valencia, Spain), and to determine how relative attenuation varied throughout the year and time of day. Measurements were taken at 9:00 a.m., 12:00 p.m. and 3:00 p.m. during July 2019 and January 2020. Relative attenuation values were obtained from the measurement of spectral irradiance in the exterior and at different points in the interior by means of two Ocean Optics spectrometers: HR4000CG-UV-NIR for VIS (400-700 nm) and NIR (700-1000 nm) bands, and FLAME-S-UV-VIS for UV-A (280-315 nm) and UV-A (315-400 nm) bands. The central points of the skylight had relative attenuation at 520 nm, reaching a value of 50% in summer at noon and 38% in the afternoon. At noon in winter, there were two relative attenuation peaks above 33% at 520 nm and at 900 nm. For mean relative attenuation, in the UVB range, the highest relative attenuation (20%) was inside the ruins in the morning in both summer and winter, and the UVA band relative attenuation was quite constant throughout the museum, but lower than that of the UVB band, in the range 0-3%.


Subject(s)
Solar Energy , Ultraviolet Rays , Archaeology , Seasons , Spain
9.
Sensors (Basel) ; 21(2)2021 Jan 09.
Article in English | MEDLINE | ID: mdl-33435459

ABSTRACT

The famous Renaissance frescoes in Valencia's Cathedral (Spain) have been kept under confined temperature and relative humidity (RH) conditions for about 300 years, until the removal of the baroque vault covering them, carried out in 2006. In the interest of longer-term preservation and in order to maintain these frescoes in good condition, a unique monitoring system was implemented to record both air temperature and RH. Sensors were installed in different points at the vault of the apse, during the restoration process. The present study proposes a statistical methodology for analyzing a subset of RH data recorded in 2008 and 2010, from the sensors. This methodology is based on fitting different functions and models to the time series, in order to classify the sensors. The methodology proposed, computes classification variables and applies a discriminant technique to them. The classification variables correspond to estimates of parameters of the models and features such as mean and maximum, among others. These features are computed using values of the functions such as spectral density, sample autocorrelation (sample ACF), sample partial autocorrelation (sample PACF), and moving range (MR). The classification variables computed were structured as a matrix. Next, Sparse Partial Least Squares Discriminant Analysis (sPLS-DA) was applied in order to discriminate sensors according to their position in the vault. It was found that the classification of sensors derived from Seasonal ARIMA-TGARCH showed the best performance (i.e., lowest classification error rate). Based on these results, the methodology applied here can be useful for characterizing the differences in RH, measured at different positions in a historical building.

10.
Sensors (Basel) ; 19(17)2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31484453

ABSTRACT

Dielectrophoretic force is an electric force experienced by particles subjected to non-uniform electric fields. In recent years, plenty of dielectrophoretic force (DEP) applications have been developed. Most of these works have been centered on particle positioning and manipulation. DEP particle characterization has been left in the background. Likewise, these characterizations have studied the electric properties of particles from a qualitative point of view. This article focuses on the quantitative measurement of cells' dielectric force, specifically yeast cells. The measures are obtained as the results of a theoretical model and an instrumental method, both of which are developed and described in the present article, based on a dielectrophoretic chamber made of two V-shaped placed electrodes. In this study, 845 cells were measured. For each one, six speeds were taken at different points in its trajectory. Furthermore, the chamber design is repeatable, and this was the first time that measurements of dielectrophoretic force and cell velocity for double yeast cells were accomplished. To validate the results obtained in the present research, the results have been compared with the dielectric properties of yeast cells collected in the pre-existing literature.


Subject(s)
Electrophoresis/methods , Models, Theoretical
11.
Sensors (Basel) ; 18(1)2018 Jan 11.
Article in English | MEDLINE | ID: mdl-29324692

ABSTRACT

Dynamic laser speckle (DLS) is used as a reliable sensor of activity for all types of materials. Traditional applications are based on high-rate captures (usually greater than 10 frames-per-second, fps). Even for drying processes in conservation treatments, where there is a high level of activity in the first moments after the application and slower activity after some minutes or hours, the process is based on the acquisition of images at a time rate that is the same in moments of high and low activity. In this work, we present an alternative approach to track the drying process of protective layers and other painting conservation processes that take a long time to reduce their levels of activity. We illuminate, using three different wavelength lasers, a temporary protector (cyclododecane) and a varnish, and monitor them using a low fps rate during long-term drying. The results are compared to the traditional method. This work also presents a monitoring method that uses portable equipment. The results present the feasibility of using the portable device and show the improved sensitivity of the dynamic laser speckle when sensing the long-term process for drying cyclododecane and varnish in conservation.

12.
Sensors (Basel) ; 18(2)2018 Jan 25.
Article in English | MEDLINE | ID: mdl-29370142

ABSTRACT

The characterization of the microclimatic conditions is fundamental for the preventive conservation of archaeological sites. In this context, the identification of the factors that influence the thermo-hygrometric equilibrium is key to determine the causes of cultural heritage deterioration. In this work, a characterization of the thermo-hygrometric conditions of Casa di Diana (Ostia Antica, Italy) is carried out analyzing the data of temperature and relative humidity recorded by a system of sensors with high monitoring frequency. Sensors are installed in parallel, calibrated and synchronized with a microcontroller. A data set of 793,620 data, arranged in a matrix with 66,135 rows and 12 columns, was used. Furthermore, the influence of human impact (visitors) is evaluated through a multiple linear regression model and a logistic regression model. The visitors do not affect the environmental humidity as it is very high and constant all the year. The results show a significant influence of the visitors in the upset of the thermal balance. When a tourist guide takes place, the probability that the hourly temperature variation reaches values higher than its monthly average is 10.64 times higher than it remains equal or less to its monthly average. The analysis of the regression residuals shows the influence of outdoor climatic variables in the thermal balance, such as solar radiation or ventilation.

13.
Sensors (Basel) ; 16(8)2016 Aug 15.
Article in English | MEDLINE | ID: mdl-27537886

ABSTRACT

Monitoring temperature and relative humidity of the environment to which artefacts are exposed is fundamental in preventive conservation studies. The common approach in setting measuring instruments is the choice of a high sampling rate to detect short fluctuations and increase the accuracy of statistical analysis. However, in recent cultural heritage standards the evaluation of variability is based on moving average and short fluctuations and therefore massive acquisition of data in slowly-changing indoor environments could end up being redundant. In this research, the sampling frequency to set a datalogger in a museum room and inside a microclimate frame is investigated by comparing the outcomes obtained from datasheets associated with different sampling conditions. Thermo-hygrometric data collected in the Sorolla room of the Pio V Museum of Valencia (Spain) were used and the widely consulted recommendations issued in UNI 10829:1999 and EN 15757:2010 standards and in the American Society of Heating, Air-Conditioning and Refrigerating Engineers (ASHRAE) guidelines were applied. Hourly sampling proved effective in obtaining highly reliable results. Furthermore, it was found that in some instances daily means of data sampled every hour can lead to the same conclusions as those of high frequency. This allows us to improve data logging design and manageability of the resulting datasheets.

14.
Sensors (Basel) ; 15(4): 7246-66, 2015 Mar 25.
Article in English | MEDLINE | ID: mdl-25815447

ABSTRACT

Preventive conservation represents a working method and combination of techniques which helps in determining and controlling the deterioration process of cultural heritage in order to take the necessary actions before it occurs. It is acknowledged as important, both in terms of preserving and also reducing the cost of future conservation measures. Therefore, long-term monitoring of physical parameters influencing cultural heritage is necessary. In the context of Smart Cities, monitoring of cultural heritage is of interest in order to perform future comparative studies and load information into the cloud that will be useful for the conservation of other heritage sites. In this paper the development of an economical and appropriate acquisition data system combining wired and wireless communication, as well as third party hardware for increased versatility, is presented. The device allows monitoring a complex network of points with high sampling frequency, with wired sensors in a 1-wire bus and a wireless centralized system recording data for monitoring of physical parameters, as well as the future possibility of attaching an alarm system or sending data over the Internet. This has been possible with the development of three board's designs and more than 5000 algorithm lines. System tests have shown an adequate system operation.

15.
Sci Total Environ ; 488-489: 14-25, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24814033

ABSTRACT

Chemometrics has been applied successfully since the 1990s for the multivariate statistical control of industrial processes. A new area of interest for these tools is the microclimatic monitoring of cultural heritage. Sensors record climatic parameters over time and statistical data analysis is performed to obtain valuable information for preventive conservation. A case study of an open-air archaeological site is presented here. A set of 26 temperature and relative humidity data-loggers was installed in four rooms of Ariadne's house (Pompeii). If climatic values are recorded versus time at different positions, the resulting data structure is equivalent to records of physical parameters registered at several points of a continuous chemical process. However, there is an important difference in this case: continuous processes are controlled to reach a steady state, whilst open-air sites undergo tremendous fluctuations. Although data from continuous processes are usually column-centred prior to applying principal components analysis, it turned out that another pre-treatment (row-centred data) was more convenient for the interpretation of components and to identify abnormal patterns. The detection of typical trajectories was more straightforward by dividing the whole monitored period into several sub-periods, because the marked climatic fluctuations throughout the year affect the correlation structures. The proposed statistical methodology is of interest for the microclimatic monitoring of cultural heritage, particularly in the case of open-air or semi-confined archaeological sites.


Subject(s)
Air Pollution/statistics & numerical data , Archaeology , Environmental Monitoring , Air Pollution/analysis , Humidity , Italy , Microclimate , Multivariate Analysis , Particulate Matter/analysis , Temperature
16.
Int J Hyperthermia ; 30(2): 86-95, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24495189

ABSTRACT

PURPOSE: The 'foetal origin hypothesis' postulates that a number of organ structures and associated functions undergo programming during embryonic and foetal life and the neonatal period, which determines the set point of physiological and metabolic responses that carry into adulthood. We evaluate the relationship between high environmental temperatures and the reproductive function of male offspring to determine whether pregnant mammals and their infants are potentially vulnerable to the effects of climate change. METHODS: Rabbit pups were exposed to high temperatures during gestation and lactation. RESULTS: Foetal and postnatal exposure to high temperatures did not alter semen characteristics and was associated with a similar fertility rate and number of pups born. Moreover, males showed reduced rate of maturing and carcass traits at adulthood. CONCLUSION: Our findings suggest that male exposure during the foetal period to high temperatures did not affect sperm quality but permitted an adaptive phenotypic plasticity of growth in adulthood.


Subject(s)
Hot Temperature/adverse effects , Prenatal Exposure Delayed Effects , Animals , Cell Survival/radiation effects , Climate Change , Female , Fertility/radiation effects , Fetus/radiation effects , Lactation , Male , Pregnancy , Rabbits , Sperm Motility/radiation effects , Spermatozoa/cytology , Spermatozoa/radiation effects , Testis/anatomy & histology , Testis/radiation effects , Testosterone/blood
17.
Sensors (Basel) ; 14(1): 1665-79, 2014 Jan 17.
Article in English | MEDLINE | ID: mdl-24445414

ABSTRACT

The Noheda archaeological site is unique and exceptional for its size, and the quality and conservation condition of the Roman mosaic pavement covering its urban pars. In 2008 a tent was installed as protection from rain and sun. Being of interest to characterise the microclimate of the remains, six probes with relative humidity and temperature sensors were installed in 2013 for this purpose. Microclimate monitoring allowed us to check relative humidity differences resulting from the groundwater level, as well as inner sensors reaching maximum temperatures higher than the outdoors ones as a consequence of the non-ventilated tent covering the archaeological site. Microclimatic conditions in the archaeological site were deemed detrimental for the conservation of the mosaics. Thus, in summer 2013, expanded clay and geotextile were installed over the mosaics as a corrective action. The outcomes of this study have proven the effectiveness of this solution to control temperature and relative humidity, helping to configure a more stable microclimate suitable for preservation of the mosaic.


Subject(s)
Archaeology/methods , Environmental Monitoring/methods , Models, Statistical , Spain
18.
Sensors (Basel) ; 13(9): 11407-23, 2013 Aug 26.
Article in English | MEDLINE | ID: mdl-24064599

ABSTRACT

The mudéjar church of Santa María (Ateca) is valuable for its architecture and the altarpiece contained inside. Ateca is a village with continental climate characterized by cold winters and hot summers. In this paper we are interested in analysing the effect of temperature and relative humidity (RH) changes produced by the heating system on the altarpiece. Therefore, a monitoring system of 15 temperature and 15 relative humidity sensors was installed with a recording frequency of a data point per minute. The main contribution of this paper is the quantitative study of the effect of the heating system on the thermo-hygrometric parameters using statistical techniques such as ANOVA, mean daily trajectories or bivariate plots, and the proposal of an innovative dynamic contour plot. As results, the heating system produces a substantial increase (decrease) of temperature (RH) causing an hourly variation of these physical parameters detrimental to the conservation of the altarpiece, especially in its higher areas.


Subject(s)
Art , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Heating/methods , Humidity , Thermography/instrumentation , Transducers , Equipment Design , Equipment Failure Analysis , Reproducibility of Results , Seasons , Sensitivity and Specificity , Spain
19.
Sensors (Basel) ; 13(8): 9729-46, 2013 Jul 29.
Article in English | MEDLINE | ID: mdl-23899937

ABSTRACT

Preventive conservation requires monitoring and control of the parameters involved in the deterioration process, mainly temperature and relative humidity. It is important to characterise an archaeological site prior to carrying out comparative studies in the future for preventive conservation, either by regular studies to verify whether the conditions are constant, or occasional ones when the boundary conditions are altered. There are numerous covered archaeological sites, but few preventive conservation works that give special attention to the type of cover installed. In particular, there is no background of microclimatic studies in sites that are in the ground and, as in the Plaza de l'Almoina (Valencia, Spain), are buried and partially covered by a transparent roof. A large effect of the transparent cover was found by the sensors located below this area, with substantial increases in temperature and a decrease in the relative humidity during the day. Surrounding zones also have values above the recommended temperature values. On the other hand, the influence of a buried water drainage line near the site is notable, causing an increase in relative humidity levels in the surrounding areas. Multivariate statistical analyses enabled us to characterise the microclimate of the archaeological site, allowing future testing to determine whether the conservation conditions have been altered.


Subject(s)
Archaeology/instrumentation , Conservation of Natural Resources/methods , Environmental Monitoring/instrumentation , Humidity , Multivariate Analysis , Remote Sensing Technology/instrumentation , Thermography/instrumentation , Archaeology/methods , Equipment Design , Equipment Failure Analysis , Remote Sensing Technology/methods , Spain , Transducers , Water/analysis
20.
Sensors (Basel) ; 13(6): 8000-12, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23793020

ABSTRACT

In this study we propose an electronic system for linear positioning of a magnet independent of its modulus, which could vary because of aging, different fabrication process, etc. The system comprises a linear array of 24 Hall Effect sensors of proportional response. The data from all sensors are subject to a pretreatment (normalization) by row (position) making them independent on the temporary variation of its magnetic field strength. We analyze the particular case of the individual flow in milking of goats. The multiple regression analysis allowed us to calibrate the electronic system with a percentage of explanation R² = 99.96%. In our case, the uncertainty in the linear position of the magnet is 0.51 mm that represents 0.019 L of goat milk. The test in farm compared the results obtained by direct reading of the volume with those obtained by the proposed electronic calibrated system, achieving a percentage of explanation of 99.05%.

SELECTION OF CITATIONS
SEARCH DETAIL
...