Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 6836, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37884492

ABSTRACT

In light of the ongoing COVID-19 pandemic and the emergence of new SARS-CoV-2 variants, understanding the effectiveness of various booster vaccination regimens is pivotal. In Chile, using a prospective national cohort of 3.75 million individuals aged 20 or older, we evaluate the effectiveness against COVID-19-related intensive care unit (ICU) admissions and death of mRNA-based second vaccine boosters for four different three-dose background regimes: BNT162b2 primary series followed by a homologous booster, and CoronaVac primary series followed by an mRNA booster, a homologous booster, and a ChAdOx-1 booster. We estimate the vaccine effectiveness weekly from February 14 to August 15, 2022, by determining hazard ratios of immunization over non-vaccination, accounting for relevant confounders. The overall adjusted effectiveness of a second mRNA booster shot is 88.2% (95%CI, 86.2-89.9) against ICU admissions and 90.5% (95%CI 89.4-91.4) against death. Vaccine effectiveness shows a mild decrease for all regimens and outcomes, probably linked to the introduction of BA.4 and BA.5 Omicron sub-lineages and the waning of immunity. Based on our findings, individuals might not need additional boosters for at least 6 months after receiving a second mRNA booster shot in this setting.


Subject(s)
COVID-19 , Humans , Cohort Studies , COVID-19/epidemiology , COVID-19/prevention & control , Chile/epidemiology , SARS-CoV-2 , BNT162 Vaccine , Pandemics , Prospective Studies , RNA, Messenger
2.
Front Public Health ; 11: 1229045, 2023.
Article in English | MEDLINE | ID: mdl-37693706

ABSTRACT

Introduction: Severe acute respiratory syndrome virus 2 (SARS-CoV-2) has caused over million deaths worldwide, with more than 61,000 deaths in Chile. The Chilean government has implemented a vaccination program against SARS-CoV-2, with over 17.7 million people receiving a complete vaccination scheme. The final target is 18 million individuals. The most common vaccines used in Chile are CoronaVac (Sinovac) and BNT162b2 (Pfizer-Biotech). Given the global need for vaccine boosters to combat the impact of emerging virus variants, studying the immune response to SARS-CoV-2 is crucial. In this study, we characterize the humoral immune response in inoculated volunteers from Chile who received vaccination schemes consisting of two doses of CoronaVac [CoronaVac (2x)], two doses of CoronaVac plus one dose of BNT162b2 [CoronaVac (2x) + BNT162b2 (1x)], and three doses of BNT162b2 [BNT162b2 (3x)]. Methods: We recruited 469 participants from Clínica Dávila in Santiago and the Health Center Víctor Manuel Fernández in the city of Concepción, Chile. Additionally, we included participants who had recovered from COVID-19 but were not vaccinated (RCN). We analyzed antibodies, including anti-N, anti-S1-RBD, and neutralizing antibodies against SARS-CoV-2. Results: We found that antibodies against the SARS-CoV-2 nucleoprotein were significantly higher in the CoronaVac (2x) and RCN groups compared to the CoronaVac (2x) + BNT162b2 (1x) or BNT162b2 (3x) groups. However, the CoronaVac (2x) + BNT162b2 (1x) and BNT162b2 (3x) groups exhibited a higher concentration of S1-RBD antibodies than the CoronaVac (2x) group and RCN group. There were no significant differences in S1-RBD antibody titers between the CoronaVac (2x) + BNT162b2 (1x) and BNT162b2 (3x) groups. Finally, the group immunized with BNT162b2 (3x) had higher levels of neutralizing antibodies compared to the RCN group, as well as the CoronaVac (2x) and CoronaVac (2x) + BNT162b2 (1x) groups. Discussion: These findings suggest that vaccination induces the secretion of antibodies against SARS-CoV-2, and a booster dose of BNT162b2 is necessary to generate a protective immune response. In the current state of the pandemic, these data support the Ministry of Health of the Government of Chile's decision to promote heterologous vaccination as they indicate that a significant portion of the Chilean population has neutralizing antibodies against SARS-CoV-2.


Subject(s)
COVID-19 , Vaccines , Humans , Immunity, Humoral , SARS-CoV-2 , BNT162 Vaccine , Chile , COVID-19/prevention & control , Vaccination , Antibodies, Neutralizing
3.
Lancet Reg Health Am ; 21: 100487, 2023 May.
Article in English | MEDLINE | ID: mdl-37155483

ABSTRACT

Background: Policymakers urgently need evidence to adequately balance the costs and benefits of mass vaccination against COVID-19 across all age groups, including children and adolescents. In this study, we aim to assess the effectiveness of CoronaVac's primary series among children and adolescents in Chile. Methods: We used a large prospective national cohort of about two million children and adolescents 6-16 years to estimate the effectiveness of an inactivated SARS-CoV-2 vaccine (CoronaVac) in preventing laboratory-confirmed symptomatic SARS-CoV-2 infection (COVID-19), hospitalisation, and admission to an intensive care unit (ICU) associated with COVID-19. We compared the risk of individuals treated with a complete primary immunization schedule (two doses, 28 days apart) with the risk of unvaccinated individuals during the follow-up period. The study was conducted in Chile from June 27, 2021, to January 12, 2022, when the SARS-CoV-2 Delta variant was predominant but other variants of concern were co-circulating, including Omicron. We used inverse probability-weighted survival regression models to estimate hazard ratios of complete immunization over the unvaccinated status, accounting for time-varying vaccination exposure and adjusting for relevant demographic, socioeconomic, and clinical confounders. Findings: The estimated adjusted vaccine effectiveness for the inactivated SARS-CoV-2 vaccine in children aged 6-16 years was 74.5% (95% CI, 73.8-75.2), 91.0% (95% CI, 87.8-93.4), 93.8% (95% CI, 87.8-93.4) for the prevention of COVID-19, hospitalisation, and ICU admission, respectively. For the subgroup of children 6-11 years, the vaccine effectiveness was 75.8% (95% CI, 74.7-76.8) for the prevention of COVID-19 and 77.9% (95% CI, 61.5-87.3) for the prevention of hospitalisation. Interpretation: Our results suggest that a complete primary immunization schedule with the inactivated SARS-CoV-2 vaccine provides effective protection against severe COVID-19 disease for children 6-16 years. Funding: Agencia Nacional de Investigación y Desarrollo (ANID) Millennium Science Initiative Program and Fondo de Financiamiento de Centros de Investigación en Áreas Prioritarias (FONDAP).

4.
Nat Med ; 28(7): 1377-1380, 2022 07.
Article in English | MEDLINE | ID: mdl-35605637

ABSTRACT

The outbreak of the B.1.1.529 lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Omicron) has caused an unprecedented number of Coronavirus Disease 2019 (COVID-19) cases, including pediatric hospital admissions. Policymakers urgently need evidence of vaccine effectiveness in children to balance the costs and benefits of vaccination campaigns, but, to date, the evidence is sparse. Leveraging a population-based cohort in Chile of 490,694 children aged 3-5 years, we estimated the effectiveness of administering a two-dose schedule, 28 days apart, of Sinovac's inactivated SARS-CoV-2 vaccine (CoronaVac). We used inverse probability-weighted survival regression models to estimate hazard ratios of symptomatic COVID-19, hospitalization and admission to an intensive care unit (ICU) for children with complete immunization over non-vaccination, accounting for time-varying vaccination exposure and relevant confounders. The study was conducted between 6 December 2021 and 26 February 2022, during the Omicron outbreak in Chile. The estimated vaccine effectiveness was 38.2% (95% confidence interval (CI), 36.5-39.9) against symptomatic COVID-19, 64.6% (95% CI, 49.6-75.2) against hospitalization and 69.0% (95% CI, 18.6-88.2) against ICU admission. The effectiveness against symptomatic COVID-19 was modest; however, protection against severe disease was high. These results support vaccination of children aged 3-5 years to prevent severe illness and associated complications and highlight the importance of maintaining layered protections against SARS-CoV-2 infection.


Subject(s)
COVID-19 , Viral Vaccines , COVID-19/epidemiology , COVID-19 Vaccines , Child , Child, Preschool , Chile/epidemiology , Disease Outbreaks/prevention & control , Humans , SARS-CoV-2
5.
Lancet Glob Health ; 10(6): e798-e806, 2022 06.
Article in English | MEDLINE | ID: mdl-35472300

ABSTRACT

BACKGROUND: Several countries have authorised or begun using a booster vaccine dose against COVID-19. Policy makers urgently need evidence of the effectiveness of additional vaccine doses and its clinical spectrum for individuals with complete primary immunisation schedules, particularly in countries where the primary schedule used inactivated SARS-CoV-2 vaccines. METHODS: Using individual-level data, we evaluated a prospective, observational, national-level cohort of individuals (aged ≥16 years) affiliated with the Fondo Nacional de Salud insurance programme in Chile, to assess the effectiveness of CoronaVac (Sinovac Biotech), AZD1222 (Oxford-AstraZeneca), or BNT162b2 (Pfizer-BioNTech) vaccine boosters in individuals who had completed a primary immunisation schedule with CoronaVac, compared with unvaccinated individuals. Individuals administered vaccines from Feb 2, 2021, to the prespecified study end date of Nov 10, 2021, were evaluated; we excluded individuals with a probable or confirmed SARS-CoV-2 infection (RT-PCR or antigen test) on or before Feb 2, 2021, and individuals who had received at least one dose of any COVID-19 vaccine before Feb 2, 2021. We estimated the vaccine effectiveness of booster doses against laboratory-confirmed symptomatic COVID-19 (symptomatic COVID-19) cases and COVID-19 outcomes (hospitalisation, admission to the intensive care unit [ICU], and death We used inverse probability-weighted and stratified survival regression models to estimate hazard ratios, accounting for time-varying vaccination status and adjusting for relevant demographic, socioeconomic, and clinical confounders. We estimated the change in hazard from unvaccinated status to vaccinated status associated with the primary immunisation series and a booster vaccine. FINDINGS: 11 174 257 individuals were eligible for this study, among whom 4 127 546 completed a primary immunisation schedule (two doses) with CoronaVac and received a booster dose during the study period. 1 921 340 (46·5%) participants received an AZD1222 booster, 2 019 260 (48·9%) received a BNT162b2 booster, and 186 946 (4·5%) received a homologous booster with CoronaVac. We calculated an adjusted vaccine effectiveness (weighted stratified Cox model) in preventing symptomatic COVID-19 of 78·8% (95% CI 76·8-80·6) for a three-dose schedule with CoronaVac, 96·5% (96·2-96·7) for a BNT162b2 booster, and 93·2% (92·9-93·6) for an AZD1222 booster. The adjusted vaccine effectiveness against COVID-19-related hospitalisation, ICU admission, and death was 86·3% (83·7-88·5), 92·2% (88·7-94·6), and 86·7% (80·5-91·0) for a homologous CoronaVac booster, 96·1% (95·3-96·9), 96·2% (94·6-97·3), and 96·8% (93·9-98·3) for a BNT162b2 booster, and 97·7% (97·3-98·0), 98·9% (98·5-99·2), and 98·1% (97·3-98·6) for an AZD1222 booster. INTERPRETATION: Our results suggest that a homologous or heterologous booster dose for individuals with a complete primary vaccination schedule with CoronaVac provides a high level of protection against COVID-19, including severe disease and death. Heterologous boosters showed higher vaccine effectiveness than a homologous booster for all outcomes, providing additional support for a mix-and-match approach. FUNDING: Agencia Nacional de Investigación y Desarrollo through the Fondo Nacional de Desarrollo Científico y Tecnológico, Millennium Science Initiative Program, and Fondo de Financiamiento de Centros de Investigación en Áreas Prioritarias.


Subject(s)
COVID-19 Vaccines , COVID-19 , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , ChAdOx1 nCoV-19 , Humans , Prospective Studies , SARS-CoV-2
6.
Front Public Health ; 9: 743300, 2021.
Article in English | MEDLINE | ID: mdl-34926372

ABSTRACT

In January 2021, the Chilean city of Concepción experienced a second wave of coronavirus 2019 (COVID-19) while in early April 2021, the entire country faced the same situation. This outbreak generated the need to modify and validate a method for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in saliva, thereby expanding the capacity and versatility of testing for COVID-19. This study was conducted in February 2021 in the Chilean city of Concepción during which time, the town was under total quarantine. The study participants were mostly symptomatic (87.4%), not hospitalized, and attended care centers because of their health status rather than being asked by the researchers. People coming to the health center in Concepción to be tested for COVID-19 (via reverse transcriptase polymerase chain reaction [RT-PCR]) from a specimen of nasopharyngeal swab (NPS) were then invited to participate in this study. A total of 131 participants agreed to sign an informed consent and to provide saliva and NPS specimens to validate a method in terms of sensitivity, specificity, and statistical analysis of the cycle threshold (Ct) values from the RT-PCR. Calculations pertaining to the 127 participants who were ultimately included in the analysis showed sensitivity and specificity at 94.34% (95% CI: 84.34-98.82%) and 98.65% (95% CI: 92.70-99.97%), respectively. The saliva specimen showed a performance comparable to NPS as demonstrated by the diagnostic parameters. This RT-PCR method from the saliva specimen is a highly sensitive and specific alternative compared to the reference methodology, which uses the NPS specimen. This modified and validated method is intended for use in the in vitro diagnosis of SARS-CoV-2, which provides health authorities in Chile and local laboratories with a real testing alternative to RT-PCR from NPS.


Subject(s)
COVID-19 , SARS-CoV-2 , Saliva/virology , COVID-19/diagnosis , COVID-19 Testing , Chile , Humans , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/isolation & purification , Specimen Handling
7.
N Engl J Med ; 385(10): 875-884, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34233097

ABSTRACT

BACKGROUND: Mass vaccination campaigns to prevent coronavirus disease 2019 (Covid-19) are occurring in many countries; estimates of vaccine effectiveness are urgently needed to support decision making. A countrywide mass vaccination campaign with the use of an inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine (CoronaVac) was conducted in Chile starting on February 2, 2021. METHODS: We used a prospective national cohort, including participants 16 years of age or older who were affiliated with the public national health care system, to assess the effectiveness of the inactivated SARS-CoV-2 vaccine with regard to preventing Covid-19 and related hospitalization, admission to the intensive care unit (ICU), and death. We estimated hazard ratios using the extension of the Cox proportional-hazards model, accounting for time-varying vaccination status. We estimated the change in the hazard ratio associated with partial immunization (≥14 days after receipt of the first dose and before receipt of the second dose) and full immunization (≥14 days after receipt of the second dose). Vaccine effectiveness was estimated with adjustment for individual demographic and clinical characteristics. RESULTS: The study was conducted from February 2 through May 1, 2021, and the cohort included approximately 10.2 million persons. Among persons who were fully immunized, the adjusted vaccine effectiveness was 65.9% (95% confidence interval [CI], 65.2 to 66.6) for the prevention of Covid-19 and 87.5% (95% CI, 86.7 to 88.2) for the prevention of hospitalization, 90.3% (95% CI, 89.1 to 91.4) for the prevention of ICU admission, and 86.3% (95% CI, 84.5 to 87.9) for the prevention of Covid-19-related death. CONCLUSIONS: Our results suggest that the inactivated SARS-CoV-2 vaccine effectively prevented Covid-19, including severe disease and death, a finding that is consistent with results of phase 2 trials of the vaccine. (Funded by Agencia Nacional de Investigación y Desarrollo and others.).


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine , Mass Vaccination , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/mortality , Chile/epidemiology , Female , Hospitalization/statistics & numerical data , Humans , Incidence , Intensive Care Units , Male , Middle Aged , Patient Acuity , Prospective Studies , Treatment Outcome , Vaccines, Inactivated , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...