Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropharmacology ; 164: 107896, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31811875

ABSTRACT

The LPA1 receptor, one of the six characterized G protein-coupled receptors (LPA1-6) through which lysophosphatidic acid acts, is likely involved in promoting normal emotional behaviours. Current data suggest that the LPA-LPA1-receptor pathway may be involved in mediating the negative consequences of stress on hippocampal function. However, to date, there is no available information regarding the mechanisms whereby the LPA1 receptor mediates this adaptation. To gain further insight into how the LPA-LPA1 pathway may prevent the negative consequences of chronic stress, we assessed the effects of the continuous delivery of LPA on depressive-like behaviours induced by a chronic restraint stress protocol. Because a proper excitatory/inhibitory balance seems to be key for controlling the stress response system, the gene expression of molecular markers of excitatory and inhibitory neurotransmission was also determined. In addition, the hippocampal expression of mineralocorticoid receptor genes and glucocorticoid receptor genes and proteins as well as plasma corticosterone levels were determined. Contrary to our expectations, the continuous delivery of LPA in chronically stressed animals potentiated rather than inhibited some (e.g., anhedonia, reduced latency to the first immobility period), though not all, behavioural effects of stress. Furthermore, this treatment led to an alteration in the genes coding for proteins involved in the excitatory/inhibitory balance in the ventral hippocampus and to changes in corticosterone levels. In conclusion, the results of this study reinforce the assumption that LPA is involved in emotional regulation, mainly through the LPA1 receptor, and regulates the effects of stress on hippocampal gene expression and hippocampus-dependent behaviour.


Subject(s)
Behavior, Animal , Hippocampus/physiopathology , Receptors, Lysophosphatidic Acid/genetics , Stress, Psychological/genetics , Stress, Psychological/psychology , Anhedonia , Animals , Chronic Disease , Corticosterone/blood , Depression/psychology , Gene Expression , Male , Mice , Mice, Inbred C57BL , Neural Inhibition , Receptors, Mineralocorticoid/biosynthesis , Receptors, Mineralocorticoid/genetics , Stress, Psychological/physiopathology , Swimming/psychology , Synaptic Transmission
2.
Transl Psychiatry ; 7(4): e1077, 2017 04 04.
Article in English | MEDLINE | ID: mdl-28375206

ABSTRACT

Anxious depression is a prevalent disease with devastating consequences and a poor prognosis. Nevertheless, the neurobiological mechanisms underlying this mood disorder remain poorly characterized. The LPA1 receptor is one of the six characterized G protein-coupled receptors (LPA1-6) through which lysophosphatidic acid acts as an intracellular signalling molecule. The loss of this receptor induces anxiety and several behavioural and neurobiological changes that have been strongly associated with depression. In this study, we sought to investigate the involvement of the LPA1 receptor in mood. We first examined hedonic and despair-like behaviours in wild-type and maLPA1 receptor null mice. Owing to the behavioural response exhibited by the maLPA1-null mice, the panic-like reaction was assessed. In addition, c-Fos expression was evaluated as a measure of the functional activity, followed by interregional correlation matrices to establish the brain map of functional activation. maLPA1-null mice exhibited anhedonia, agitation and increased stress reactivity, behaviours that are strongly associated with the psychopathological endophenotype of depression with anxiety features. Furthermore, the functional brain maps differed between the genotypes. The maLPA1-null mice showed increased limbic-system activation, similar to that observed in depressive patients. Antidepressant treatment induced behavioural improvements and functional brain normalisation. Finally, based on validity criteria, maLPA1-null mice are proposed as an animal model of anxious depression. Here, for we believe the first time, we have identified a possible relationship between the LPA1 receptor and anxious depression, shedding light on the unknown neurobiological basis of this subtype of depression and providing an opportunity to explore new therapeutic targets for the treatment of mood disorders, especially for the anxious subtype of depression.


Subject(s)
Anxiety/physiopathology , Depression/metabolism , Endophenotypes , Mice, Knockout/psychology , Receptors, Lysophosphatidic Acid/deficiency , Anhedonia/physiology , Animals , Anxiety/metabolism , Brain/metabolism , Genes, fos/genetics , Limbic System/metabolism , Lysophospholipids/metabolism , Male , Mice , Models, Animal , Receptors, Lysophosphatidic Acid/drug effects , Receptors, Lysophosphatidic Acid/metabolism , Stress, Psychological
3.
Matrix Biol ; 22(6): 491-500, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14667841

ABSTRACT

Multidrug resistance protein-6 (MRP6) is a membrane transporter whose deficiency leads to the connective tissue disorder Pseudoxanthoma elasticum (PXE). In vitro dermal fibroblasts from normal and PXE subjects, homozygous for the R1141X mutation, were compared for their ability to accumulate and to release fluorescent calcein, in the absence and in the presence of inhibitors and competitors of the MDR-multidrug resistance protein (MRP) systems, such as 3-(3-(2-(7-choro-2 quinolinyl) ethenyl)phenyl ((3-dimethyl amino-3-oxo-propyl)thio) methyl) propanoic acid (MK571), verapamil (VPL), vinblastine (VBL), chlorambucil (CHB), benzbromarone (BNZ) and indomethacin (IDM). In the absence of chemicals, calcein accumulation was significantly higher and the release significantly slower in PXE cells compared to controls. VBL and CHB reduced calcein release in both cell strains, without affecting the differences between PXE and control fibroblasts. VPL, BNZ and IDM consistently delayed calcein release from both control and PXE cells; moreover, they abolished the differences between normal and MRP6-deficient fibroblasts observed in the absence of chemicals. These findings suggest that VPL, BNZ and IDM interfere with MRP6-dependent calcein extrusion in in vitro human normal fibroblasts. Interestingly, MK571 almost completely abolished calcein release from PXE cells, whereas it induced a strong but less complete inhibition in control fibroblasts, suggesting that MRP6 is not inhibited by MK571. Data show that MRP6 is active in human fibroblasts, and that its sensitivity to inhibitors and competitors of MDR-MRPs' membrane transporters is different from that of other translocators, namely, MRP1. It could be suggested that MRP1 and MRP6 transport different physiological substances and that MRP6 deficiency cannot be overcome by other membrane transporters, at least in fibroblasts. These data further support the hypothesis that MRP6 deficiency may be relevant for fibroblast metabolism and responsible for the metabolic alterations of these cells at the basis of connective tissue clinical manifestations of PXE.


Subject(s)
Fibroblasts/metabolism , Multidrug Resistance-Associated Proteins/physiology , Pseudoxanthoma Elasticum/physiopathology , Skin/physiopathology , Adult , Benzbromarone/pharmacology , Cell Count , Cell Division , Chlorambucil/pharmacology , Female , Fibroblasts/cytology , Fibroblasts/drug effects , Fluoresceins/pharmacokinetics , Fluoresceins/pharmacology , Fluorescent Dyes/pharmacokinetics , Fluorescent Dyes/pharmacology , Humans , Indomethacin/pharmacology , Lysosomes/chemistry , Male , Membrane Transport Proteins/physiology , Microscopy, Fluorescence , Middle Aged , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Propionates/pharmacology , Pseudoxanthoma Elasticum/metabolism , Quinolines/pharmacology , Skin/metabolism , Verapamil/pharmacology , Vinblastine/pharmacology
4.
Vet Hum Toxicol ; 36(5): 429-32, 1994 Oct.
Article in English | MEDLINE | ID: mdl-7839568

ABSTRACT

Residue levels of coumaphos, diazinon and malathion in honey were analysed in 177 samples of honey collected from different regions of Lugo in NW Spain in 1988-1990. One has to expect some of them as residues in honey, even if employed properly, for example coumaphos used against the parasitic mite Varroa jacobsoni. Honey samples were extracted with acetonitrile:water (2:1 v/v), partitioned with petroleum-ether, cleaned up with a manual Florisil column or Florisil Sep-Pack, evaporated to dryness, redissolved in an appropriate volume (1 mL) and then analyzed by GLC with a silica capillary column and nitrogen-phosphorus detector. Recoveries of coumaphos, diazinon and malathion varied between 80-97%. One hundred forty-eight samples contained no detectable residues, while 29 had residues of coumaphos and diazinon in ppb levels. These residues are minimal and when eating honey are harmless for the health of human beings.


Subject(s)
Coumaphos/analysis , Diazinon/analysis , Honey/analysis , Malathion/analysis , Pesticide Residues/analysis , Calibration , Chromatography, Gas , Humans , Longitudinal Studies , Pest Control , Reference Standards , Reproducibility of Results , Safety , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...