Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Magn Reson Imaging ; 51(5): 1478-1486, 2020 05.
Article in English | MEDLINE | ID: mdl-31654541

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is the most aggressive primary brain tumor, characterized by a heterogeneous and abnormal vascularity. Subtypes of vascular habitats within the tumor and edema can be distinguished: high angiogenic tumor (HAT), low angiogenic tumor (LAT), infiltrated peripheral edema (IPE), and vasogenic peripheral edema (VPE). PURPOSE: To validate the association between hemodynamic markers from vascular habitats and overall survival (OS) in glioblastoma patients, considering the intercenter variability of acquisition protocols. STUDY TYPE: Multicenter retrospective study. POPULATION: In all, 184 glioblastoma patients from seven European centers participating in the NCT03439332 clinical study. FIELD STRENGTH/SEQUENCE: 1.5T (for 54 patients) or 3.0T (for 130 patients). Pregadolinium and postgadolinium-based contrast agent-enhanced T1 -weighted MRI, T2 - and FLAIR T2 -weighted, and dynamic susceptibility contrast (DSC) T2 * perfusion. ASSESSMENT: We analyzed preoperative MRIs to establish the association between the maximum relative cerebral blood volume (rCBVmax ) at each habitat with OS. Moreover, the stratification capabilities of the markers to divide patients into "vascular" groups were tested. The variability in the markers between individual centers was also assessed. STATISTICAL TESTS: Uniparametric Cox regression; Kaplan-Meier test; Mann-Whitney test. RESULTS: The rCBVmax derived from the HAT, LAT, and IPE habitats were significantly associated with patient OS (P < 0.05; hazard ratio [HR]: 1.05, 1.11, 1.28, respectively). Moreover, these markers can stratify patients into "moderate-" and "high-vascular" groups (P < 0.05). The Mann-Whitney test did not find significant differences among most of the centers in markers (HAT: P = 0.02-0.685; LAT: P = 0.010-0.769; IPE: P = 0.093-0.939; VPE: P = 0.016-1.000). DATA CONCLUSION: The rCBVmax calculated in HAT, LAT, and IPE habitats have been validated as clinically relevant prognostic biomarkers for glioblastoma patients in the pretreatment stage. This study demonstrates the robustness of the hemodynamic tissue signature (HTS) habitats to assess the GBM vascular heterogeneity and their association with patient prognosis independently of intercenter variability. LEVEL OF EVIDENCE: 3 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2020;51:1478-1486.


Subject(s)
Brain Neoplasms , Glioblastoma , Brain Neoplasms/diagnostic imaging , Contrast Media , Glioblastoma/diagnostic imaging , Humans , Magnetic Resonance Imaging , Prognosis , Retrospective Studies
2.
Int J Med Inform ; 128: 53-61, 2019 08.
Article in English | MEDLINE | ID: mdl-31160012

ABSTRACT

BACKGROUND: Neuroimaging analysis is currently crucial for an early assessment of glioblastoma, to help improving treatment and tumor follow-up. To this end, multiple functional and morphological MRI sequences are usually employed, requiring the development of automated tools capable to extract the relevant information from these sources. In this work we present ONCOhabitats (https://www.oncohabitats.upv.es): an online open access system for glioblastoma analysis based on MRI data. METHODS: ONCOhabitats provides two main services for untreated glioblastomas: (1) malignant tissue segmentation, and (2) vascular heterogeneity assessment of the tumor. The segmentation service implements a deep patch-wise 3D Convolutional Neural Network with residual connections. The vascular heterogeneity assessment service implements the Hemodynamic Tissue Signature (HTS) method patented in P201431289, which aims to identify habitats within the tumor with early prognostic capabilities. RESULTS: The segmentation service was validated against the BRATS 2017 reference dataset, showing comparable results with current state-of-the-art methods (whole tumor Dice segmentation: 0.89). The vascular heterogeneity assessment service was validated in a retrospective cohort of 50 patients, in a study focused on predicting patient overall survival based on the HTS habitats. Cox proportional hazard regression analysis and Kaplan-Meier survival study showed significant positive correlations (p-value <.05) between the HTS habitats and patient overall survival. ONCOhabitats system also generates radiological reports for each service, including volumetries and perfusion measurements of the different regions of the lesion. CONCLUSION: ONCOhabitats system provides open-access services for glioblastoma heterogeneity assessment, implementing consolidated state-of-the-art techniques for medical image analysis. Additionally, we also give access to the scientific community to our computational resources, offering a computational capacity of about 300 cases per day.


Subject(s)
Glioblastoma/classification , Glioblastoma/pathology , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Neural Networks, Computer , Neuroimaging/methods , Software , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Prognosis , Retrospective Studies
3.
NMR Biomed ; 31(12): e4006, 2018 12.
Article in English | MEDLINE | ID: mdl-30239058

ABSTRACT

Advanced MRI and molecular markers have been raised as crucial to improve prognostic models for patients having glioblastoma (GBM) lesions. In particular, different MR perfusion based markers describing vascular intrapatient heterogeneity have been correlated with tumor aggressiveness, and represent key information to understand tumor resistance against effective therapies of these neoplasms. Recently, hemodynamic tissue signature (HTS) markers based on MR perfusion images have been demonstrated to be useful for describing the heterogeneity of GBM at the voxel level, as well as demonstrating significant correlations with the patient's overall survival. In this work, we analyze the abilities of these markers to improve the conventional prognostic models based on clinical, morphological, and demographic features. Our results, in both the regression and classification tests, show that inclusion of the HTS markers improves the reliability of prognostic models. The HTS method is fully automatic and it is available for research use at http://www.oncohabitats.upv.es.


Subject(s)
Glioblastoma/diagnosis , Glioblastoma/physiopathology , Hemodynamics , Magnetic Resonance Imaging , Adult , Aged , Aged, 80 and over , Female , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Prognosis , Proportional Hazards Models
SELECTION OF CITATIONS
SEARCH DETAIL
...