Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Gerontol A Biol Sci Med Sci ; 76(4): 601-610, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33053185

ABSTRACT

Calorie restriction (CR) remains the most robust intervention to extend life span and improve healthspan. Though the cerebellum is more commonly associated with motor control, it has strong links with the hypothalamus and is thought to be associated with nutritional regulation and adiposity. Using a global mass spectrometry-based metabolomics approach, we identified 756 metabolites that were significantly differentially expressed in the cerebellar region of the brain of C57BL/6J mice, fed graded levels of CR (10, 20, 30, and 40 CR) compared to mice fed ad libitum for 12 hours a day. Pathway enrichment indicated changes in the pathways of adenosine and guanine (which are precursors of DNA production), aromatic amino acids (tyrosine, phenylalanine, and tryptophan) and the sulfur-containing amino acid methionine. We also saw increases in the tricarboxylic acid cycle (TCA) cycle, electron donor, and dopamine and histamine pathways. In particular, changes in l-histidine and homocarnosine correlated positively with the level of CR and food anticipatory activity and negatively with insulin and body temperature. Several metabolic and pathway changes acted against changes seen in age-associated neurodegenerative disorders, including increases in the TCA cycle and reduced l-proline. Carnitine metabolites contributed to discrimination between CR groups, which corroborates previous work in the liver and plasma. These results indicate the conservation of certain aspects of metabolism across tissues with CR. Moreover, this is the first study to indicate CR alters the cerebellar metabolome, and does so in a graded fashion, after only a short period of restriction.


Subject(s)
Appetite Regulation , Caloric Restriction/methods , Cerebellum/physiology , Healthy Aging/metabolism , Hypothalamus/physiology , Metabolome/physiology , Metabolomics/methods , Signal Transduction/physiology , Animals , Hunger/physiology , Longevity , Mass Spectrometry/methods , Mice , Mice, Inbred C57BL , Neural Pathways , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/prevention & control
2.
Front Nutr ; 1: 18, 2014.
Article in English | MEDLINE | ID: mdl-25988120

ABSTRACT

Hydroxytyrosol is one of the main phenolic components of olive oil. It is present in the fruit and leaf of the olive (Olea europaea L.). During the past decades, it has been well documented that this phenolic compound has health benefits and a protective action has been found in preclinical studies against several diseases. Here, we review its bioavailability in human beings and several assays showing significant results related with cardiovascular diseases, cancer, and acquired immunodeficiency syndrome (AIDS). Mechanisms of action include potent anti-oxidant and anti-inflammatory effects, among others. The importance of hydroxytyrosol in protection of low-density lipoproteins and consequently its implication in the reduction of cardiovascular disease risk has been highlighted by the European Food Safety Authority, concluding that 5 mg of hydroxytyrosol and its derivatives should be consumed daily to reach this effect at physiological level. We discuss the potential uses of this compound in supplements, nutraceutic foods, or topical formulations in the disease risk reduction. Finally, we conclude that more studies are needed to sustain or reject many other health claims not yet fully documented and to validate these newly available hydroxytyrosol-based products, because it seems to be a good candidate to reduce the risk of diseases mentioned.

SELECTION OF CITATIONS
SEARCH DETAIL
...