Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 230: 122314, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-33934779

ABSTRACT

The preservation of the integrity of artworks and cultural heritage items during characterization and conservation operations is of high priority, therefore, the application of non-invasive techniques is commonly suggested and recommended. Nonlinear optical microscopies (NLOM), based on the use of tightly focused pulsed femtosecond lasers, are emerging techniques for structural and chemical analysis of heritage objects with micrometric lateral and axial resolution. The results obtained with a set of optical and spectroscopic techniques for the chemical and physical characterization of grisaille paint layers on historical stained glasses, from different chronologies and provenance in Spain, are presented in this work. Optical behaviour and chemical composition were investigated by NLOM, using a laboratory set-up in the modality of Multi-Photon Excitation Fluorescence (MPEF), and by a multi-analytical combination of Field Emission Scanning Electron Microscopy-Energy Dispersive X-ray Spectrometry (FESEM-EDS), Laser Induced Breakdown Spectrosocopy (LIBS) and Laser Induced Fluorescence (LIF). Thicknesses values of the historical grisaille paint layers measured with MPEF were compared with those retrieved through FESEM, showing significant consistency and agreement. Under proper conditions, analysis via MPEF microscopy avoids the photochemical and physical damage to the examined materials, thus ensuring their preservation. This approach paves the way for future in-situ, non-invasive stratigraphic investigations on cultural heritage objects.

2.
Environ Sci Technol ; 39(10): 3743-7, 2005 May 15.
Article in English | MEDLINE | ID: mdl-15952380

ABSTRACT

Optical sensors developed from dye-doped coatings obtained through the sol-gel method were designed and produced to evaluate air acidity. Both laboratory calibration and field test measurements in several locales of downtown Cracow, Poland, were undertaken with the aim of assessing the sensors' behavior. As a first approach, SO2 was considered as the main gaseous pollutant with acid properties capable of sensitizing the sensors under humid conditions. A relationship between the SO2 concentration measured by conventional automatic air pollution monitoring stations and the optical response of the sensors was established. To correlate such a relationship with the air acidity, a simple calculation, which also takes into account relative humidity, temperature, and atmospheric pressure, was done. Following this calculation, the sensors' detection threshold for pH was found to be 0.05, approximately. The sensors can be a very useful analytical tool to alert against acid rain risks in preventive conservation of historical materials, among other applications.


Subject(s)
Acid Rain/analysis , Air Pollutants/analysis , Environmental Monitoring/instrumentation , Optics and Photonics , Sulfur Dioxide/analysis , Air , Calibration , Coloring Agents , Environmental Monitoring/methods , Equipment Design , Hydrogen-Ion Concentration , Pilot Projects , p-Dimethylaminoazobenzene/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL
...