Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 16(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38931161

ABSTRACT

(1) Background: The aim was to validate an AI-based system compared to the classic method of reading ultrasound images of the rectus femur (RF) muscle in a real cohort of patients with disease-related malnutrition. (2) Methods: One hundred adult patients with DRM aged 18 to 85 years were enrolled. The risk of DRM was assessed by the Global Leadership Initiative on Malnutrition (GLIM). The variation, reproducibility, and reliability of measurements for the RF subcutaneous fat thickness (SFT), muscle thickness (MT), and cross-sectional area (CSA), were measured conventionally with the incorporated tools of a portable ultrasound imaging device (method A) and compared with the automated quantification of the ultrasound imaging system (method B). (3) Results: Measurements obtained using method A (i.e., conventionally) and method B (i.e., raw images analyzed by AI), showed similar values with no significant differences in absolute values and coefficients of variation, 58.39-57.68% for SFT, 30.50-28.36% for MT, and 36.50-36.91% for CSA, respectively. The Intraclass Correlation Coefficient (ICC) for reliability and consistency analysis between methods A and B showed correlations of 0.912 and 95% CI [0.872-0.940] for SFT, 0.960 and 95% CI [0.941-0.973] for MT, and 0.995 and 95% CI [0.993-0.997] for CSA; the Bland-Altman Analysis shows that the spread of points is quite uniform around the bias lines with no evidence of strong bias for any variable. (4) Conclusions: The study demonstrated the consistency and reliability of this new automatic system based on machine learning and AI for the quantification of ultrasound imaging of the muscle architecture parameters of the rectus femoris muscle compared with the conventional method of measurement.


Subject(s)
Artificial Intelligence , Malnutrition , Quadriceps Muscle , Ultrasonography , Humans , Ultrasonography/methods , Middle Aged , Aged , Male , Female , Adult , Reproducibility of Results , Malnutrition/diagnostic imaging , Malnutrition/diagnosis , Aged, 80 and over , Young Adult , Quadriceps Muscle/diagnostic imaging , Adolescent
2.
Int J Sports Med ; 44(7): 505-515, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36446604

ABSTRACT

The countermovement jump, the V-cut test, the muscle thickness and the adjacent subcutaneous fat thickness of the gastrocnemius medialis and rectus femoris are important physiological indicators for success in basketball. The aims of this study were to evaluate between-age-category and between-gender differences in these indicators and examine the relationships between physical tests and ultrasound measurements. The measurements were recorded in a sample of 131 elite basketball players (66 males) who played in three age-categories (U14, U16, or U18). We performed two-way analysis of covariance tests and age-adjusted partial correlation analyses. U16 and U18 males showed better performance in the countermovement jump and V-cut tests and lower adjacent subcutaneous fat thickness of the gastrocnemius medialis and rectus femoris compared to the U14 males (p≤.001) and to age-category equivalent female players (p≤.001). Comparisons between the age categories in females did not show significant differences in any of the study variables. Adjacent subcutaneous fat thickness of the gastrocnemius medialis explained 22.3% of the variation for the countermovement jump result and 12.9% of the variation for the V-cut result in males (p<.01). This study is the first to show the association and predictive role of subcutaneous fat thickness measured by ultrasound in physical performance of male and female elite youth basketball players.


Subject(s)
Athletic Performance , Basketball , Male , Humans , Adolescent , Female , Basketball/physiology , Athletic Performance/physiology , Physical Fitness/physiology , Ultrasonography , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiology
3.
Article in English | MEDLINE | ID: mdl-25897404

ABSTRACT

BACKGROUND: The mechanisms of muscle injury repair after EPI® technique, a treatment based on electrical stimulation, have not been described. This study determines whether EPI® therapy could improve muscle damage. METHODS: Twenty-four rats were divided into a control group, Notexin group (7 and 14 days) and a Notexin + EPI group. To induce muscle injury, Notexin was injected in the quadriceps of the left extremity of rats. Pro-inflammatory interleukin 1-beta (IL-1beta) and tumoral necrosis factor-alpha (TNF-alpha) were determined by ELISA. The expression of receptor peroxisome gamma proliferator activator (PPAR-gamma), vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor-1 (VEGF-R1) were determined by western-blot. RESULTS: The plasma levels of TNF-alpha and IL-1beta in Notexin-injured rats showed a significant increase compared with the control group. EPI® produced a return of TNF-alpha and IL-1beta values to control levels. PPAR-gamma expression diminished injured quadriceps muscle in rats. EPI® increased PPAR-gamma, VEGF and VEGF-R1 expressions. EPI® decreased plasma levels of pro-inflammatory TNF-alpha and IL-1beta and increased anti-inflammatory PPAR-gamma and proangiogenic factors as well as VEGF and VEGF-R1 expressions. CONCLUSION: The EPI® technique may affect inflammatory mediators in damaged muscle tissue and influences the new vascularization of the injured area. These results suggest that EPI® might represent a useful new therapy for the treatment of muscle injuries. Although our study in rats may represent a valid approach to evaluate EPI® treatment, studies designed to determine how the EPI® treatment may affect recovery of injury in humans are needed.

SELECTION OF CITATIONS
SEARCH DETAIL
...