Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36616107

ABSTRACT

The fabrication of NiO films by different routes is important to extend and improve their applications as hole-transporting layers in organic and inorganic optoelectronic devices. Here, an automated ultrasonic pyrolysis spray method was used to fabricate NiO and Li-doped NiO thin films using nickel acetylacetonate and lithium acetate dihydrate as metal precursor and dimethylformamide as solvent. The effect of the amount of lithium in the precursor solution on the structural, morphological, optical, and electrical properties were studied. XRD results reveal that all the samples are polycrystalline with cubic structure and crystallite sizes in the range of 21 to 25 nm, without any clear trend with the Li doping level. AFM analysis shows that the crystallites form round-shaped aggregates and all the films have low roughness. The optical transmittance of the films reaches values of 60% to 77% with tendency upward as Li content is increased. The electrical study shows that the films are p-type, with the carrier concentration, resistivity, and carrier mobility depending on the lithium doping. NiO:Li (10%) films were successfully incorporated into inorganic light emitting diodes together with Mn-doped ZnS and ZnO:Al films, all deposited on ITO by the same ultrasonic spray pyrolysis technique.

2.
Molecules ; 26(24)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34946677

ABSTRACT

Composite scaffolds are commonly used strategies and materials employed to achieve similar analogs of bone tissue. This study aims to fabricate 10% wt polylactic acid (PLA) composite fiber scaffolds by the air-jet spinning technique (AJS) doped with 0.5 or 0.1 g of zirconium oxide nanoparticles (ZrO2) for guide bone tissue engineering. ZrO2 nanoparticles were obtained by the hydrothermal method and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). SEM and fourier-transform infrared spectroscopy (FTIR) analyzed the synthesized PLA/ZrO2 fiber scaffolds. The in vitro biocompatibility and bioactivity of the PLA/ZrO2 were studied using human fetal osteoblast cells. Our results showed that the hydrothermal technique allowed ZrO2 nanoparticles to be obtained. SEM analysis showed that PLA/ZrO2 composite has a fiber diameter of 395 nm, and the FITR spectra confirmed that the scaffolds' chemical characteristics are not affected by the synthesized technique. In vitro studies demonstrated that PLA/ZrO2 scaffolds increased cell adhesion, cellular proliferation, and biomineralization of osteoblasts. In conclusion, the PLA/ZrO2 scaffolds are bioactive, improve osteoblasts behavior, and can be used in tissue bone engineering applications.


Subject(s)
Nanoparticles/chemistry , Osteoblasts/metabolism , Polyesters/chemistry , Tissue Engineering , Tissue Scaffolds/chemistry , Zirconium/chemistry , Calcification, Physiologic , Cell Adhesion , Cell Line , Cell Proliferation , Humans , Osteoblasts/cytology
3.
Micromachines (Basel) ; 9(8)2018 Aug 19.
Article in English | MEDLINE | ID: mdl-30424347

ABSTRACT

The spray pyrolysis technique has been extensively used to synthesize materials for a wide variety of applications such as micro and sub-micrometer dimension MOSFET´s for integrated circuits technology, light emitting devices for displays, and solid-state lighting, planar waveguides and other multilayer structure devices for photonics. This technique is an atmospheric pressure chemical synthesis of materials, in which a precursor solution of chemical compounds in the proper solvent is sprayed and converted into powders or films through a pyrolysis process. The most common ways to generate the aerosol for the spraying process are by pneumatic and ultrasonic systems. The synthesis parameters are usually optimized for the materials optical, structural, electric and mechanical characteristics required. There are several reviews of the research efforts in which spray pyrolysis and the processes involved have been described in detail. This review is intended to focus on research work developed with this technique in relation to high-K dielectric and luminescent materials in the form of coatings and powders as well as multiple layered structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...