Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 258: 119373, 2022 09.
Article in English | MEDLINE | ID: mdl-35700947

ABSTRACT

Brain oscillations are considered to play a pivotal role in neural communication. However, detailed information regarding the typical oscillatory patterns of individual brain regions is surprisingly scarce. In this study we applied a multivariate data-driven approach to create an atlas of the natural frequencies of the resting human brain on a voxel-by-voxel basis. We analysed resting-state magnetoencephalography (MEG) data from 128 healthy adult volunteers obtained from the Open MEG Archive (OMEGA). Spectral power was computed in source space in 500 ms steps for 82 frequency bins logarithmically spaced from 1.7 to 99.5 Hz. We then applied k-means clustering to detect characteristic spectral profiles and to eventually identify the natural frequency of each voxel. Our results provided empirical confirmation of the canonical frequency bands and revealed a region-specific organisation of intrinsic oscillatory activity, following both a medial-to-lateral and a posterior-to-anterior gradient of increasing frequency. In particular, medial fronto-temporal regions were characterised by slow rhythms (delta/theta). Posterior regions presented natural frequencies in the alpha band, although with differentiated generators in the precuneus and in sensory-specific cortices (i.e., visual and auditory). Somatomotor regions were distinguished by the mu rhythm, while the lateral prefrontal cortex was characterised by oscillations in the high beta range (>20 Hz). Importantly, the brain map of natural frequencies was highly replicable in two independent subsamples of individuals. To the best of our knowledge, this is the most comprehensive atlas of ongoing oscillatory activity performed to date. Critically, the identification of natural frequencies is a fundamental step towards a better understanding of the functional architecture of the human brain.


Subject(s)
Magnetoencephalography , Rest , Adult , Brain , Brain Mapping/methods , Humans , Magnetoencephalography/methods , Temporal Lobe
2.
Neuroimage ; 199: 704-717, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31051292

ABSTRACT

Behavioral adaptations during performance rely on predicting and evaluating the consequences of our actions through action monitoring. Previous studies revealed that proprioceptive and exteroceptive signals contribute to error-monitoring processes, which are implemented in the posterior medial frontal cortex. Interestingly, errors also trigger changes in autonomic nervous system activity such as pupil dilation or heartbeat deceleration. Yet, the contribution of implicit interoceptive signals of bodily states to error-monitoring during ongoing performance has been overlooked. This study investigated whether cardiovascular interoceptive signals influence the neural correlates of error processing during performance, with an emphasis on the early stages of error processing. We recorded musicians' electroencephalography and electrocardiogram signals during the performance of highly-trained music pieces. Previous event-related potential (ERP) studies revealed that pitch errors during skilled musical performance are preceded by an error detection signal, the pre-error-negativity (preERN), and followed by a later error positivity (PE). In this study, by combining ERP, source localization and multivariate pattern classification analysis, we found that the error-minus-correct ERP waveform had an enhanced amplitude within 40-100 ms following errors in the systolic period of the cardiac cycle. This component could be decoded from single-trials, was dissociated from the preERN and PE, and stemmed from the inferior parietal cortex, which is a region implicated in cardiac autonomic regulation. In addition, the phase of the cardiac cycle influenced behavioral alterations resulting from errors, with a smaller post-error slowing and less perturbed velocity in keystrokes following pitch errors in the systole relative to the diastole phase of the cardiac cycle. Lastly, changes in the heart rate anticipated the upcoming occurrence of errors. This study provides the first evidence of preconscious visceral information modulating neural and behavioral responses related to early error monitoring during skilled performance.


Subject(s)
Adaptation, Physiological/physiology , Anticipation, Psychological/physiology , Electroencephalography/methods , Evoked Potentials/physiology , Executive Function/physiology , Heart Rate/physiology , Interoception/physiology , Parietal Lobe/physiology , Pitch Perception/physiology , Psychomotor Performance/physiology , Systole/physiology , Adult , Diastole/physiology , Electrocardiography , Female , Humans , Male , Music , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...