Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Org Process Res Dev ; 28(5): 1587-1596, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38783858

ABSTRACT

A simple and benign continuous flow oxidation protocol for the selective conversion of primary and secondary alcohols into their respective aldehyde and ketone products is reported. This approach makes use of catalytic amounts of TEMPO in combination with sodium bromide and sodium hypochlorite in a biphasic solvent system. A variety of substrates are tolerated including those containing heterocycles based on potentially sensitive nitrogen and sulfur moieties. The flow approach can be coupled with inline reactive extraction by formation of the carbonyl-bisulfite adduct which aids in separation of remaining substrate or other impurities. Process robustness is evaluated for the preparation of phenylpropanal at decagram scale, a trifluoromethylated oxazole building block as well as a late-stage intermediate for the anti-HIV drug maraviroc which demonstrates the potential value of this continuous oxidation method.

2.
Chem Sci ; 15(13): 4618-4630, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38550700

ABSTRACT

This article defines the role that continuous flow chemistry can have in new reaction discovery, thereby creating molecular assembly opportunities beyond our current capabilities. Most notably the focus is based upon photochemical, electrochemical and temperature sensitive processes where continuous flow methods and machine assisted processing can have significant impact on chemical reactivity patterns. These flow chemical platforms are ideally placed to exploit future innovation in data acquisition, feed-back and control through artificial intelligence (AI) and machine learning (ML) techniques.

3.
Org Lett ; 26(12): 2371-2375, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38466090

ABSTRACT

We report a new protocol for the synthesis of substituted benzotriazin-4(3H)-ones which are underrepresented heterocyclic scaffolds with important pharmacological properties. Our method exploits acyclic aryl triazine precursors that undergo a photocyclization reaction upon exposure to violet light (420 nm). Continuous flow reactor technology is exploited to afford excellent yields in only 10 min residence time with no additives or photocatalysts needed. The underlying reaction mechanism appears to be based on an unprecedented variation of the classical Norrish type II reaction with concomitant fragmentation and formation of N-N bonds. Scalability, process robustness, and green credentials of this intriguing transformation are highlighted.

4.
J Org Chem ; 89(1): 617-623, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38131303

ABSTRACT

Nitrosoarenes are versatile organic building blocks; however, their intrinsic instability and limited synthetic accessibility have so far restricted their widespread use. Herein, we present a new continuous flow route toward these entities that is based on a direct photochemical rearrangement process using o-nitrophenylimines as starting materials. Due to the underlying redox mechanism, a new amide group accompanies the formation of the nitroso group. Crucial to the success of this approach is the use of trifluoroethanol as a solvent and high-power light-emitting diodes (365 nm) as light sources that provide uniform irradiation and high efficiency of the resulting continuous flow method. The process is fast and robust, with high functional group tolerance and high throughput. The formation of the nitroso moiety is supported by full spectroscopic analysis, including X-ray crystallography. The scalability of this flow approach allows access to gram quantities of nitroso species for which we highlight a small set of derivatization reactions underlining their synthetic utility.

5.
RSC Adv ; 12(12): 7313-7317, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35424686

ABSTRACT

The use of flow methodology allows the use of alkynylphenyl vinyl ethers (benzo-fused 1,7 enynes) as substrates for the intramolecular Pauson-Khand reaction (PKr). Forced temperature and pressure conditions during a short reaction time minimize the substrate decomposition allowing the formation of the PK adduct. Substrates substituted at the internal position of the double bond and with internal triple bonds give better yields. The resulting products are cyclopentabenzofuranones present in diverse natural products and drugs that can be further functionalised.

6.
ChemSusChem ; 13(19): 5138-5163, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-32662578

ABSTRACT

Continuous flow reactors form part of a rapidly growing research area that has changed the way synthetic chemistry is performed not only in academia but also at the industrial level. This Review highlights the most recent advances in cycloaddition reactions performed in flow systems. Cycloadditions are atom-efficient transformations for the synthesis of carbo- and heterocycles, involved in the construction of challenging skeletons of complex molecules. The main advantages of translating these processes into flow include using intensified conditions, safer handling of hazardous reagents and gases, easy tuning of reaction conditions, and straightforward scaling up. These benefits are especially important in cycloadditions such as the copper(I)-catalyzed azide alkyne cycloaddition (CuAAC), Diels-Alder reaction, ozonolysis and [2+2] photocycloadditions. Some of these transformations are key reactions in the industrial synthesis of pharmaceuticals.

7.
Org Biomol Chem ; 17(43): 9489-9501, 2019 11 06.
Article in English | MEDLINE | ID: mdl-31651921

ABSTRACT

A new synthesis of treprostinil is described using a plug flow reactor in two of the key steps. First, a Claisen rearrangement reaction is described in scaled flow at multigram amounts. Yields and selectivity of this step are sharply improved compared to those from previous syntheses. Second, the key Pauson-Khand reaction in flow is described under catalytic conditions with 5 mol% of cobalt carbonyl and only 3 equiv. of CO. Scaling up of this reaction safely ensures a good yield of an advanced intermediate which is transformed into treprostinil in three steps. Other improvements are the introduction of the carboxymethyl chain into the phenol from the beginning to reduce the protection-deprotection steps. The synthesis is completed in 14% global yield after 12 linear steps from (S)-epichlorhydrin.

8.
Org Lett ; 20(17): 5219-5223, 2018 09 07.
Article in English | MEDLINE | ID: mdl-30125114

ABSTRACT

Cobalt-catalyzed alkyne cyclotrimerization and crossed [2 + 2 + 2] cycloadditions are developed in a plug flow reactor. The protocol generally uses 5 mol % of Co2(CO)8 and is scalable at least at multigram scale. Efficient and scalable use of Co2(CO)8 for crossed reactions of diynes and alkynes has hardly any precedent.

9.
Chem Commun (Camb) ; 53(28): 4014-4017, 2017 Apr 04.
Article in English | MEDLINE | ID: mdl-28338697

ABSTRACT

A catalytic, scalable intra- and intermolecular Pauson-Khand reaction protocol using generally 5 mol% of Co2(CO)8 as the catalyst in a plug flow reactor (PFR) is shown.

SELECTION OF CITATIONS
SEARCH DETAIL
...