Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
1.
Adv Neurobiol ; 36: 639-657, 2024.
Article in English | MEDLINE | ID: mdl-38468056

ABSTRACT

The conscious perception of pain is the result of dynamic interactions of neural activities from local brain regions to distributed brain networks. Mapping out the networks of functional connections between brain regions that form and disperse when an experimental participant received nociceptive stimulations allow to characterize the pattern of network connections related to the pain experience.Although the pattern of intra- and inter-areal connections across the brain are incredibly complex, they appear also largely scale free, with "fractal" connectivity properties reproducing at short and long-time scales. Our results combining intracranial recordings and functional imaging in humans during pain indicate striking similarities in the activity and topological representation of networks at different orders of temporality, with reproduction of patterns of activation from the millisecond to the multisecond range. The connectivity analyzed using graph theory on fMRI data was organized in four sets of brain regions matching those identified through iEEG (i.e., sensorimotor, default mode, central executive, and amygdalo-hippocampal).Here, we discuss similarities in brain network organization at different scales or "orders," in participants as they feel pain. Description of this fractal-like organization may provide clues about how our brain regions work together to create the perception of pain and how pain becomes chronic when its organization is altered.


Subject(s)
Brain Mapping , Fractals , Humans , Brain Mapping/methods , Brain , Magnetic Resonance Imaging/methods , Pain , Nerve Net/diagnostic imaging , Nerve Net/physiology
2.
Eur J Neurosci ; 59(10): 2778-2791, 2024 May.
Article in English | MEDLINE | ID: mdl-38511229

ABSTRACT

Memories of painful events constitute the basis for assessing patients' pain. This study explores the brain oscillatory activity during short-term memorization of a nociceptive stimulus. High-density EEG activity (128 electrodes) was recorded in 13 healthy subjects during a match-to-sample sensory discrimination task, whereby participants compared the intensity of a thumb-located electric shock (S2) with a prior stimulus to the same location (S1) delivered 8-10 s earlier. Stimuli were above or below the individual nociceptive threshold. EEG activity with intracortical source localization via LORETA source reconstruction was analysed during the inter-stimuli period and contrasted with a non-memory-related control task. The inter-stimulus memorization phase was characterized by a focal alpha-activity enhancement, significant during the nociceptive condition only, which progressed from bilateral occipital regions (cuneus and mid-occipital gyri) during the first encoding-memorization phase towards the right-superior and right mid-temporal gyri during the 2-4 s immediately preceding S2. Initial alpha enhancement in occipital areas/cuneus is consistent with rapid non-specific inhibition of task-irrelevant visual processing during initial stimulus encoding. Its transfer to the right-temporal regions was concomitant to the temporary upholding of the stimulus perceptual representation, previous to receiving S2, and suggests an active and local blockade of external interferences while these regions actively maintain internal information. These results add to a growing field indicating that alpha oscillations, while indicating local inhibitory processes, can also indirectly reveal active stimulus handling, including maintenance in short-term memory buffers, by objectivizing the filtering out of irrelevant and potentially disrupting inputs in brain regions engaged in internally driven operations.


Subject(s)
Alpha Rhythm , Memory, Short-Term , Humans , Male , Female , Adult , Alpha Rhythm/physiology , Memory, Short-Term/physiology , Electroencephalography/methods , Pain/physiopathology , Young Adult , Brain/physiology
3.
Pain Rep ; 9(2): e1134, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38375090

ABSTRACT

Introduction: The ability of repetitive transcranial magnetic stimulation (rTMS) to deliver a magnetic field (MF) in deep brain targets is debated and poorly documented. Objective: To quantify the decay of MF in the human brain. Methods: Magnetic field was generated by single pulses of TMS delivered at maximum intensity using a flat or angulated coil. Magnetic field was recorded by a 3D-magnetic probe. Decay was measured in the air using both coils and in the head of 10 postmortem human heads with the flat coil being positioned tangential to the scalp. Magnetic field decay was interpreted as a function of distance to the coil for 6 potential brain targets of noninvasive brain stimulation: the primary motor cortex (M1, mean depth: 28.5 mm), dorsolateral prefrontal cortex (DLPFC: 28 mm), secondary somatosensory cortex (S2: 35.5 mm), posterior and anterior insulae (PI: 38.5 mm; AI: 43.5 mm), and midcingulate cortex (MCC: 57.5 mm). Results: In air, the maximal MF intensities at coil center were 0.88 and 0.77 T for the flat and angulated coils, respectively. The maximal intracranial MF intensity in the cadaver model was 0.34 T, with a ∼50% decay at 15 mm and a ∼75% MF decay at 30 mm. The decay of the MF in air was similar for the flat coil and significantly less attenuated with the angulated coil (a ∼50% decay at 20 mm and a ∼75% MF decay at 45 mm). Conclusions: Transcranial magnetic stimulation coil MFs decay in brain structures similarly as in air, attenuation with distance being significantly lower with angulated coils. Reaching brain targets deeper than 20 mm such as the insula or Antérior Cingulate Cortex seems feasible only when using angulated coils. The abacus of MF attenuation provided here can be used to adjust modalities of deep brain stimulation with rTMS in future research protocols.

4.
Eur J Pain ; 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38381488

ABSTRACT

BACKGROUND AND OBJECTIVE: Functional magnetic resonance imaging, in conjunction with models of peripheral and/or central sensitization, has been used to assess analgesic efficacy in healthy humans. This review aims to summarize the use of these techniques to characterize brain mechanisms of hyperalgesia/allodynia and to evaluate the efficacy of analgesics. DATABASES AND DATA TREATMENT: Searches were performed (PubMed-Medline, Cochrane, Web of Science and Clinicaltrials.gov) to identify and review studies. A co-ordinate based meta-analysis (CBMA) was conducted to quantify neural activity that was reported across multiple independent studies in the hyperalgesic condition compared to control, using GingerALE software. RESULTS: Of 217 publications, 30 studies met the inclusion criteria. They studied nine different models of hyperalgesia/allodynia assessed in the primary (14) or secondary hyperalgesia zone (16). Twenty-three studies focused on neural correlates of hyperalgesic conditions and showed consistent changes in the somatosensory cortex, prefrontal cortices, insular cortex, anterior cingulate cortex, thalamus and brainstem. The CBMA on 12 studies that reported activation coordinates for a contrast comparing the hyperalgesic state to control produced six activation clusters (significant at false discovery rate of 0.05) with more peaks for secondary (17.7) than primary zones (7.3). Seven studies showed modulation of brain activity by analgesics in five of the clusters but also in four additional regions. CONCLUSIONS: This meta-analysis revealed substantial but incomplete overlap between brain areas related to neural mechanisms of hyperalgesia and those reflecting the efficacy of analgesic drugs. Studies testing in the secondary zone were more sensitive to evaluate analgesic efficacy on central sensitization at brainstem or thalamocortical levels. SIGNIFICANCE: Experimental pain models that provide a surrogate for features of pathological pain conditions in healthy humans and functional imaging techniques are both highly valuable research tools. This review shows that when used together, they provide a wealth of information about brain activity during pain states and analgesia. These tools are promising candidates to help bridge the gap between animal and human studies, to improve translatability and provide opportunities for identification of new targets for back-translation to animal studies.

6.
Eur J Neurosci ; 59(4): 570-583, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36889675

ABSTRACT

The interruption of sleep by a nociceptive stimulus is favoured by an increase in the pre-stimulus functional connectivity between sensory and higher level cortical areas. In addition, stimuli inducing arousal also trigger a widespread electroencephalographic (EEG) response reflecting the coordinated activation of a large cortical network. Because functional connectivity between distant cortical areas is thought to be underpinned by trans-thalamic connections involving associative thalamic nuclei, we investigated the possible involvement of one principal associative thalamic nucleus, the medial pulvinar (PuM), in the sleeper's responsiveness to nociceptive stimuli. Intra-cortical and intra-thalamic signals were analysed in 440 intracranial electroencephalographic (iEEG) segments during nocturnal sleep in eight epileptic patients receiving laser nociceptive stimuli. The spectral coherence between the PuM and 10 cortical regions grouped in networks was computed during 5 s before and 1 s after the nociceptive stimulus and contrasted according to the presence or absence of an arousal EEG response. Pre- and post-stimulus phase coherence between the PuM and all cortical networks was significantly increased in instances of arousal, both during N2 and paradoxical (rapid eye movement [REM]) sleep. Thalamo-cortical enhancement in coherence involved both sensory and higher level cortical networks and predominated in the pre-stimulus period. The association between pre-stimulus widespread increase in thalamo-cortical coherence and subsequent arousal suggests that the probability of sleep interruption by a noxious stimulus increases when it occurs during phases of enhanced trans-thalamic transfer of information between cortical areas.


Subject(s)
Pulvinar , Humans , Sleep , Arousal/physiology , Electroencephalography , Thalamus/physiology
7.
Eur Radiol Exp ; 7(1): 60, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37806998

ABSTRACT

BACKGROUND: This study investigates the functional brain connectivity in patients with anterior knee pain (AKP). While biomechanical models are frequently employed to investigate AKP, it is important to recognize that pain can manifest even in the absence of structural abnormalities. Leveraging the capabilities of functional magnetic resonance imaging (fMRI), this research aims to investigate the brain mechanisms present in AKP patients. METHODS: Forty-five female subjects (24 AKP patients, 21 controls) underwent resting-state fMRI and T1-weighted structural MRI. Functional brain connectivity patterns were analyzed, focusing on pain network areas, and the influence of catastrophizing thoughts was evaluated. RESULTS: Comparing patients and controls, several findings emerged. First, patients with AKP exhibited increased correlation between the right supplementary motor area and cerebellum I, as well as decreased correlation between the right insula and the left rostral prefrontal cortex and superior frontal gyrus. Second, in AKP patients with catastrophizing thoughts, there was increased correlation of the left lateral parietal cortex with two regions of the right cerebellum (II and VII) and the right pallidum, and decreased correlation between the left medial frontal gyrus and the right thalamus. Furthermore, the correlation between these regions showed promising results for discriminating AKP patients from controls, achieving a cross-validation accuracy of 80.5%. CONCLUSIONS: Resting-state fMRI revealed correlation differences in AKP patients compared to controls and based on catastrophizing thoughts levels. These findings shed light on neural correlates of chronic pain in AKP, suggesting that functional brain connectivity alterations may be linked to pain experience in this population. RELEVANCE STATEMENT: Etiopathogenesis of pain in anterior knee pain patients might not be limited to the knee, but also to underlying alterations in the central nervous system: cortical changes might lead a perpetuation of pain. KEY POINTS: • Anterior knee pain patients exhibit distinct functional brain connectivity compared to controls, and among catastrophizing subgroups. • Resting-state fMRI reveals potential for discriminating anterior knee pain patients with 80.5% accuracy. • Functional brain connectivity differences improve understanding of pain pathogenesis and objective anterior knee pain identification.


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Female , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Pain/pathology
9.
Eur J Pain ; 27(9): 1065-1083, 2023 10.
Article in English | MEDLINE | ID: mdl-37596980

ABSTRACT

BACKGROUND AND OBJECTIVE: Repetitive transcranial magnetic stimulation (rTMS) applied to the motor cortex provides supplementary relief for some individuals with chronic pain who are refractory to pharmacological treatment. As rTMS slowly enters treatment guidelines for pain relief, its starts to be confronted with challenges long known to pharmacological approaches: efficacy at the group-level does not grant pain relief for a particular patient. In this review, we present and discuss a series of ongoing attempts to overcome this therapeutic challenge in a personalized medicine framework. DATABASES AND DATA TREATMENT: Relevant scientific publications published in main databases such as PubMed and EMBASE from inception until March 2023 were systematically assessed, as well as a wide number of studies dedicated to the exploration of the mechanistic grounds of rTMS analgesic effects in humans, primates and rodents. RESULTS: The main strategies reported to personalize cortical neuromodulation are: (i) the use of rTMS to predict individual response to implanted motor cortex stimulation; (ii) modifications of motor cortex stimulation patterns; (iii) stimulation of extra-motor targets; (iv) assessment of individual cortical networks and rhythms to personalize treatment; (v) deep sensory phenotyping; (vi) personalization of location, precision and intensity of motor rTMS. All approaches except (i) have so far low or moderate levels of evidence. CONCLUSIONS: Although current evidence for most strategies under study remains at best moderate, the multiple mechanisms set up by cortical stimulation are an advantage over single-target 'clean' drugs, as they can influence multiple pathophysiologic paths and offer multiple possibilities of individualization. SIGNIFICANCE: Non-invasive neuromodulation is on the verge of personalised medicine. Strategies ranging from integration of detailed clinical phenotyping into treatment design to advanced patient neurophysiological characterisation are being actively explored and creating a framework for actual individualisation of care.


Subject(s)
Chronic Pain , Motor Cortex , Animals , Humans , Chronic Pain/therapy , Transcranial Magnetic Stimulation , Pain Management , Databases, Factual
10.
Eur J Pain ; 27(9): 1043, 2023 10.
Article in English | MEDLINE | ID: mdl-37565628
11.
Curr Opin Support Palliat Care ; 17(3): 142-149, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37339516

ABSTRACT

PURPOSE OF REVIEW: Neuromodulation techniques are being increasingly used to alleviate pain and enhance quality of life. Non-invasive cortical stimulation was originally intended to predict the efficacy of invasive (neurosurgical) techniques, but has now gained a place as an analgesic procedure in its own right. RECENT FINDINGS: Repetitive transcranial magnetic stimulation (rTMS): Evidence from 14 randomised, placebo-controlled trials (~750 patients) supports a significant analgesic effect of high-frequency motor cortex rTMS in neuropathic pain. Dorsolateral frontal stimulation has not proven efficacious so far. The posterior operculo-insular cortex is an attractive target but evidence remains insufficient. Short-term efficacy can be achieved with NNT (numbers needed to treat) ~2-3, but long-lasting efficacy remains a challenge.Like rTMS, transcranial direct-current stimulation (tDCS) induces activity changes in distributed brain networks and can influence various aspects of pain. Lower cost relative to rTMS, few safety issues and availability of home-based protocols are practical advantages. The limited quality of many published reports lowers the level of evidence, which will remain uncertain until more prospective controlled studies are available. SUMMARY: Both rTMS and tDCS act preferentially upon abnormal hyperexcitable states of pain, rather than acute or experimental pain. For both techniques, M1 appears to be the best target for chronic pain relief, and repeated sessions over relatively long periods of time may be required to obtain clinically significant benefits. Patients responsive to tDCS may differ from those improved by rTMS.


Subject(s)
Chronic Pain , Transcranial Direct Current Stimulation , Humans , Quality of Life , Prospective Studies , Transcranial Magnetic Stimulation/methods , Chronic Pain/therapy , Analgesics
12.
Eur J Pain ; 27(8): 1006-1022, 2023 09.
Article in English | MEDLINE | ID: mdl-37278358

ABSTRACT

BACKGROUND: Innocuous cooling of the skin activates cold-specific Aδ fibres, and hence, the recording of cold-evoked potentials (CEPs) may improve the objective assessment of human thermo-nociceptive function. While the feasibility of CEP recordings in healthy humans has been reported, their reliability and diagnostic use in clinical conditions have not been documented. METHODS: Here, we report the results of CEP recordings in 60 consecutive patients with suspected neuropathic pain, compared with laser-evoked potentials (LEPs) which are the gold standard for thermo-algesic instrumental assessment. RESULTS: CEP recording was a well-tolerated procedure, with only ~15 min of surplus in exam duration. The reproducibility and signal-to-noise ratio of CEPs were lower than those of LEPs, in particular for distal lower limbs (LLs). While laser responses were interpretable in all patients, CEPs interpretation was inconclusive in 5/60 because of artefacts or lack of response on the unaffected side. Both techniques yielded concordant results in 73% of the patients. In 12 patients, CEPs yielded abnormal values while LEPs remained within normal limits; 3 of these patients had clinical symptoms limited to cold sensations, including cold-heat transformation. CONCLUSIONS: CEPs appear as a useful technique for exploring pain/temperature systems. Advantages are low cost of equipment and innocuity. Disadvantages are low signal-to-noise ratio for LL stimulation, and sensitivity to fatigue/habituation. Joint recording of CEPs and LEPs can increase the sensitivity of neurophysiological techniques to thin fibre- spinothalamic lesions, in particular, when abnormalities of cold perception predominate. SIGNIFICANCE: Recording of cold-evoked potentials is a well-tolerated, inexpensive and easy-to-use procedure that can be helpful in the diagnosis of abnormalities in the thin fibre- spinothalamic pathways. Supplementing LEPs with CEPs allows consolidating the diagnosis and, for some patients suffering from symptoms limited only to cold, CEPs but not LEPs may allow the diagnosis of thin fibre pathology. Optimal CEP recording conditions are important to overcome the low signal-to-noise ratio and habituation phenomena, which are less favourable than with LEPs.


Subject(s)
Laser-Evoked Potentials , Neuralgia , Humans , Reproducibility of Results , Evoked Potentials, Somatosensory/physiology , Evoked Potentials/physiology , Cold Temperature , Lasers
13.
Eur J Neurol ; 30(8): 2177-2196, 2023 08.
Article in English | MEDLINE | ID: mdl-37253688

ABSTRACT

BACKGROUND AND PURPOSE: In these guidelines, we aimed to develop evidence-based recommendations for the use of screening questionnaires and diagnostic tests in patients with neuropathic pain (NeP). METHODS: We systematically reviewed studies providing information on the sensitivity and specificity of screening questionnaires, and quantitative sensory testing, neurophysiology, skin biopsy, and corneal confocal microscopy. We also analysed how functional neuroimaging, peripheral nerve blocks, and genetic testing might provide useful information in diagnosing NeP. RESULTS: Of the screening questionnaires, Douleur Neuropathique en 4 Questions (DN4), I-DN4 (self-administered DN4), and Leeds Assessment of Neuropathic Symptoms and Signs (LANSS) received a strong recommendation, and S-LANSS (self-administered LANSS) and PainDETECT weak recommendations for their use in the diagnostic pathway for patients with possible NeP. We devised a strong recommendation for the use of skin biopsy and a weak recommendation for quantitative sensory testing and nociceptive evoked potentials in the NeP diagnosis. Trigeminal reflex testing received a strong recommendation in diagnosing secondary trigeminal neuralgia. Although many studies support the usefulness of corneal confocal microscopy in diagnosing peripheral neuropathy, no study specifically investigated the diagnostic accuracy of this technique in patients with NeP. Functional neuroimaging and peripheral nerve blocks are helpful in disclosing pathophysiology and/or predicting outcomes, but current literature does not support their use for diagnosing NeP. Genetic testing may be considered at specialist centres, in selected cases. CONCLUSIONS: These recommendations provide evidence-based clinical practice guidelines for NeP diagnosis. Due to the poor-to-moderate quality of evidence identified by this review, future large-scale, well-designed, multicentre studies assessing the accuracy of diagnostic tests for NeP are needed.


Subject(s)
Neuralgia , Trigeminal Neuralgia , Humans , Public Opinion , Surveys and Questionnaires , Neuralgia/diagnosis , Sensitivity and Specificity
14.
Neurotherapeutics ; 20(1): 207-219, 2023 01.
Article in English | MEDLINE | ID: mdl-36266501

ABSTRACT

While high-frequency transcranial magnetic stimulation (HF-rTMS) is now included in the armamentarium to treat chronic neuropathic pain (NP), direct-current anodal stimulation (a-tDCS) to the same cortical targets may represent a valuable alternative in terms of feasibility and cost. Here we performed a head-to-head, randomized, single-blinded, cross-over comparison of HF-rTMS versus a-tDCS over the motor cortex in 56 patients with drug-resistant NP, who received 5 daily sessions of each procedure, with a washout of at least 4 weeks. Daily scores of pain, sleep, and fatigue were obtained during 5 consecutive weeks, and functional magnetic resonance imaging (fMRI) to a motor task was performed in a subgroup of 31 patients. The percentage of responders, defined by a reduction in pain scores of > 2 SDs from pre-stimulus levels, was similar to both techniques (42.0% vs. 42.3%), while the magnitude of "best pain relief" was significantly skewed towards rTMS. Mean pain ratings in responders decreased by 32.6% (rTMS) and 29.6% (tDCS), with half of them being sensitive to only one technique. Movement-related fMRI showed significant activations in motor and premotor areas, which did not change after 5 days of stimulation, and did not discriminate responders from non-responders. Both HF-rTMS and a-tDCS showed efficacy at 1 month in drug-resistant NP, with magnitude of relief slightly favoring rTMS. Since a significant proportion of patients responded to one procedure only, both modalities should be tested before declaring a patient as unresponsive.


Subject(s)
Motor Cortex , Neuralgia , Transcranial Direct Current Stimulation , Humans , Neuralgia/therapy , Pain Management/methods , Transcranial Direct Current Stimulation/methods , Transcranial Magnetic Stimulation/methods
15.
Cereb Cortex ; 33(7): 3538-3547, 2023 03 21.
Article in English | MEDLINE | ID: mdl-35965070

ABSTRACT

Activation of the spinothalamic system does not always result in a subjective pain perception. While the cerebral network processing nociception is relatively well known, the one underlying its transition to conscious pain remains poorly described. We used intracranial electroencephalography in epileptic patients to investigate whether the amplitudes and functional connectivity of posterior and anterior insulae (PI and AI) and amygdala differ according to the subjective reports to laser stimuli delivered at a constant intensity set at nociceptive threshold. Despite the constant intensity of stimuli, all patients reported variable subjective perceptions from one stimulus to the other. Responses in the sensory PI remained stable throughout the experiment, hence reflecting accurately the stability of the stimulus. In contrast, both AI and amygdala responses showed significant enhancements associated with painful relative to nonpainful reports, in a time window corresponding to the conscious integration of the stimulus. Functional connectivity in the gamma band between these two regions increased significantly, both before and after stimuli perceived as painful. While the PI appears to transmit faithfully the actual stimulus intensity received via the spinothalamic tract, the AI and the amygdala appear to play a major role in the transformation of nociceptive signals into a painful perception.


Subject(s)
Amygdala , Drug Resistant Epilepsy , Nociception , Pain Perception , Humans , Amygdala/diagnostic imaging , Electrocorticography , Nociception/physiology , Pain , Pain Perception/physiology , Laser-Evoked Potentials , Female , Adult
17.
Neurophysiol Clin ; 52(6): 436-445, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36307311

ABSTRACT

BACKGROUND: Pain is a private experience, whose assessment relies on subjective self-reporting. Inaccurate communication renders pain evaluation unreliable in individuals with alteration of consciousness, lack of verbal interaction, cognitive dysfunction or simple malingering, hence the importance of developing reliable objective assessment tools. OBJECTIVES: Since pain is associated with autonomic arousal, here we used readouts of autonomic activity to assess objectively the arousing effect of somatic stimuli in a human model of hyperalgesia. METHODS: We used topical capsaicin to induce cutaneous hypersensitivity in the right arm of 20 healthy volunteers, and recorded sympathetic skin responses (SSR) and numerical perceptive ratings (NRS) to stimulation of the sensitized region and its homologous contralateral site, using brush (Aß), pinprick (Aδ) and laser (C-Warmth) stimuli. RESULTS: Both subjective ratings and SSRs were significantly enhanced to stimulation of the sensitized region, and their respective ratios of maximal enhancement were positively correlated. At individual level, a significant association was observed between SSR and NRS behavior (χ2(1)= 11.03; p < 0.001), with a positive predictive value of 87% (CI95 [77-97%]) for SSR increase predicting enhancement of subjective reports. A "lie experiment" asking subjects to simulate elevated NRS failed to enhance SSRs. Significant habituation of SSRs appeared when stimuli were repeated at ∼15s intervals, hence decreasing their negative predictive value when several consecutive stimuli were averaged (NPV=46%; CI95 [30-62%]). CONCLUSION: The SSR may represent a rapid and reliable procedure to assess cutaneous hypersensitivity, simple to use in clinical practice and resistant to simulation. Rapid habituation is a drawback that can be countered by using few repetitions and low stimulus rates.


Subject(s)
Hyperalgesia , Pain , Humans , Hyperalgesia/diagnosis , Arousal/physiology , Pain Measurement , Capsaicin/pharmacology , Skin
18.
Trials ; 23(1): 739, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36064434

ABSTRACT

BACKGROUND: IMI2-PainCare-BioPain-RCT2 is one of four similarly designed clinical studies aiming at profiling a set of functional biomarkers of drug effects on specific compartments of the nociceptive system that could serve to accelerate the future development of analgesics. IMI2-PainCare-BioPain-RCT2 will focus on human spinal cord and brainstem activity using biomarkers derived from non-invasive neurophysiological measurements. METHODS: This is a multisite, single-dose, double-blind, randomized, placebo-controlled, 4-period, 4-way crossover, pharmacodynamic (PD) and pharmacokinetic (PK) study in healthy subjects. Neurophysiological biomarkers of spinal and brainstem activity (the RIII flexion reflex, the N13 component of somatosensory evoked potentials (SEP) and the R2 component of the blink reflex) will be recorded before and at three distinct time points after administration of three medications known to act on the nociceptive system (lacosamide, pregabalin, tapentadol), and placebo, given as a single oral dose in separate study periods. Medication effects on neurophysiological measures will be assessed in a clinically relevant hyperalgesic condition (high-frequency electrical stimulation of the skin), and in a non-sensitized normal condition. Patient-reported outcome measures (pain ratings and predictive psychological traits) will also be collected; and blood samples will be taken for pharmacokinetic modelling. A sequentially rejective multiple testing approach will be used with overall alpha error of the primary analysis split between the two primary endpoints, namely the percentage amplitude changes of the RIII area and N13 amplitude under tapentadol. Remaining treatment arm effects on RIII, N13 and R2 recovery cycle are key secondary confirmatory analyses. Complex statistical analyses and PK-PD modelling are exploratory. DISCUSSION: The RIII component of the flexion reflex is a pure nociceptive spinal reflex widely used for investigating pain processing at the spinal level. It is sensitive to different experimental pain models and to the antinociceptive activity of drugs. The N13 is mediated by large myelinated non-nociceptive fibers and reflects segmental postsynaptic response of wide dynamic range dorsal horn neurons at the level of cervical spinal cord, and it could be therefore sensitive to the action of drugs specifically targeting the dorsal horn. The R2 reflex is mediated by large myelinated non-nociceptive fibers, its circuit consists of a polysynaptic chain lying in the reticular formation of the pons and medulla. The recovery cycle of R2 is widely used for assessing brainstem excitability. For these reasons, IMI2-PainCare-BioPain-RCT2 hypothesizes that spinal and brainstem neurophysiological measures can serve as biomarkers of target engagement of analgesic drugs for future Phase 1 clinical trials. Phase 2 and 3 clinical trials could also benefit from these tools for patient stratification. TRIAL REGISTRATION: This trial was registered on 02 February 2019 in EudraCT ( 2019-000755-14 ).


Subject(s)
Analgesics , Pain , Spinal Cord , Analgesics/pharmacology , Biomarkers , Brain Stem , Cross-Over Studies , Double-Blind Method , Healthy Volunteers , Humans , Lacosamide , Multicenter Studies as Topic , Pain/drug therapy , Pregabalin , Randomized Controlled Trials as Topic , Tapentadol
19.
Int J Mol Sci ; 23(15)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35955432

ABSTRACT

There is an urgent need for analgesics with improved efficacy, especially in neuropathic and other chronic pain conditions. Unfortunately, in recent decades, many candidate analgesics have failed in clinical phase II or III trials despite promising preclinical results. Translational assessment tools to verify engagement of pharmacological targets and actions on compartments of the nociceptive system are missing in both rodents and humans. Through the Innovative Medicines Initiative of the European Union and EFPIA, a consortium of researchers from academia and the pharmaceutical industry was established to identify and validate a set of functional biomarkers to assess drug-induced effects on nociceptive processing at peripheral, spinal and supraspinal levels using electrophysiological and functional neuroimaging techniques. Here, we report the results of a systematic literature search for pharmacological probes that allow for validation of these biomarkers. Of 26 candidate substances, only 7 met the inclusion criteria: evidence for nociceptive system modulation, tolerability, availability in oral form for human use and absence of active metabolites. Based on pharmacokinetic characteristics, three were selected for a set of crossover studies in rodents and healthy humans. All currently available probes act on more than one compartment of the nociceptive system. Once validated, biomarkers of nociceptive signal processing, combined with a pharmacometric modelling, will enable a more rational approach to selecting dose ranges and verifying target engagement. Combined with advances in classification of chronic pain conditions, these biomarkers are expected to accelerate analgesic drug development.


Subject(s)
Analgesics , Biomarkers, Pharmacological , Drug Development , Analgesics/pharmacology , Analgesics/therapeutic use , Chronic Pain/drug therapy , Drug Development/methods , Drug Development/standards , Humans , Neuralgia/drug therapy , Reproducibility of Results , Spine/drug effects , Spine/innervation
20.
Brain Commun ; 4(3): fcac090, 2022.
Article in English | MEDLINE | ID: mdl-35528229

ABSTRACT

Central post-stroke pain affects up to 12% of stroke survivors and is notoriously refractory to treatment. However, stroke patients often suffer from other types of pain of non-neuropathic nature (musculoskeletal, inflammatory, complex regional) and no head-to-head comparison of their respective clinical and somatosensory profiles has been performed so far. We compared 39 patients with definite central neuropathic post-stroke pain with two matched control groups: 32 patients with exclusively non-neuropathic pain developed after stroke and 31 stroke patients not complaining of pain. Patients underwent deep phenotyping via a comprehensive assessment including clinical exam, questionnaires and quantitative sensory testing to dissect central post-stroke pain from chronic pain in general and stroke. While central post-stroke pain was mostly located in the face and limbs, non-neuropathic pain was predominantly axial and located in neck, shoulders and knees (P < 0.05). Neuropathic Pain Symptom Inventory clusters burning (82.1%, n = 32, P < 0.001), tingling (66.7%, n = 26, P < 0.001) and evoked by cold (64.1%, n = 25, P < 0.001) occurred more frequently in central post-stroke pain. Hyperpathia, thermal and mechanical allodynia also occurred more commonly in this group (P < 0.001), which also presented higher levels of deafferentation (P < 0.012) with more asymmetric cold and warm detection thresholds compared with controls. In particular, cold hypoesthesia (considered when the threshold of the affected side was <41% of the contralateral threshold) odds ratio (OR) was 12 (95% CI: 3.8-41.6) for neuropathic pain. Additionally, cold detection threshold/warm detection threshold ratio correlated with the presence of neuropathic pain (ρ = -0.4, P < 0.001). Correlations were found between specific neuropathic pain symptom clusters and quantitative sensory testing: paroxysmal pain with cold (ρ = -0.4; P = 0.008) and heat pain thresholds (ρ = 0.5; P = 0.003), burning pain with mechanical detection (ρ = -0.4; P = 0.015) and mechanical pain thresholds (ρ = -0.4, P < 0.013), evoked pain with mechanical pain threshold (ρ = -0.3; P = 0.047). Logistic regression showed that the combination of cold hypoesthesia on quantitative sensory testing, the Neuropathic Pain Symptom Inventory, and the allodynia intensity on bedside examination explained 77% of the occurrence of neuropathic pain. These findings provide insights into the clinical-psychophysics relationships in central post-stroke pain and may assist more precise distinction of neuropathic from non-neuropathic post-stroke pain in clinical practice and in future trials.

SELECTION OF CITATIONS
SEARCH DETAIL
...